Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 34-43    DOI: 10.13523/j.cb.20191005
    
Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus
HAN Ting-han1,ONG Xue-mei1,ING Ya-fang2,U Chen1,ZHANG Kun-xiao1,AO song1,U Heng-hao1
1 Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine harmaceutical Compound Screening,Co?Innovation Center of Jiangsu Marine Bio-ndustry Technology,Huaihai Institute of Technology, Lianyungang 222005, China
2 Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China
Download: HTML   PDF(987KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Uracil-DNA glycosylase (UDGase) is a tool enzyme widely used in qPCR, NGS and other related fields. Because of its application characters, only heat-labile UDGase has good application potential. There are only 2 species origins of heat-labile UDGase as developed tool enzymes, which are patent protected and expensive. Therefore developing new species origins of heat-labile UDGase is of urgent need.Methods: Based on previous studies and sequence analysis, it is speculated that Scophthalmus maximus has a heat-labile UDGase. It was confirmed that the liver homogenate exhibited UDGase activity. The gene of UDGase of Scophthalmus maximus, SmUDGase, was cloned from the liver homogenate. Recombinant expression of SmUDGase was achieved in E.coli, and the enzyme was purified and characterized.Results: equence alignments showed that the cloning of SmUDGase was successful. Gone through recombinant expression, purification with affinity and ion-exchange chromatography, the purified enzyme achieved a purity of 95%, a productive rate of 1.51mg/L, and a specific activity of 2 295.08U/mg. SmUDGase was heat-labile with a rapid decrease of activity above 40℃. For other enzymatic properties, such as pH range, metal ion dependency and sensitivity to the inhibitor, SmUDGase was consistent with the current commercial UDGase.Conclusion: The study successfully cloned and characterized a new species origin SmUDGase from Scophthalmus maximus. SmUDGase was heat-labile with other enzymatic properties close to current commercial UDGase. Recombinant expression and purification methods of the enzyme also were explored. The purified enzyme has basically reached the commercial production standards. These provided theoretical reference and technical reserve for development of tool enzymes of this kind.



Key wordsUracil-DNA glycosylase      Scophthalmus maximus      Heat-labile      Recombinant expression     
Received: 19 March 2019      Published: 12 November 2019
ZTFLH:  Q814  
Cite this article:

HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus. China Biotechnology, 2019, 39(10): 34-43.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191005     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/34

名称 序列
P1 5'-CACGCCATGTCGAAATTCTTAAGTGC-3'-DABCYL
P2 5'-TAMAR-GCACUUAAGGAAUUT-3'
P3 5'-GAAATTCTTAAGTGC-3'-DABCYL
P4 5'-TAMRA-GCACAAAAGAATTTC-3'
P5 5'-TAMRA-CGCTGCAGGACACATGGGGGAGCCGAGCAGCG-3'-DABCYL
SM-F 5'-ATGCCCGGGTGCTGTACTTGCCACAAACGAA-3'
SM-R 5'-TTAAAGTGTCTTCCAGTCTATGGGCGACTT-3'
ASM-F(Nhe I) 5'-GGCAGCCATATGGCTAGCATGCCGGGTGCTGTACTT-3'
ASM-R(Hind III) 5'-AGACTGGAAFACACTTTAAAAGCTTGCGGCCGCACTCC-3'
PSM-F(Nde I) 5'-GGTGCCGCGCGGCAGCCATATGCCGGGTGCGGTGCT-3'
PSM-R(Xho I) 5'-GGTGGTGGTGGGTGCTCGAGTTACAGGGTTTTCCAGT-3'
Table 1 Primer list
样品 反应5min时荧光值
大肠杆菌UDGase 293
大菱鲆肝脏匀浆1 41
大菱鲆肝脏匀浆2 67
大菱鲆肝脏匀浆3 53
阴性对照 10
Table 2 Enzyme activity of crude liver extract
Fig.1 Cloning of the Uracil-DNA glycosylase gene from Scophthalmus maximus (a) Sequence alignments of the UDGase protein sequences from E.coli (Ecoli UDG), Gadus morhua (cod UDG) and Scophthalmus maximus (SmUDG) (b) PCR amplified UDGase gene fragment from the cDNA sample
Fig.2 Recombinant expression and purification of SmUDGase (a) Schematic of pET28b-SmUDGase plasmid (b) SDS-PAGE analysis of the purification samples from different purification steps are indicated at the top of respective lanes
步骤 体积(ml) 纯度(%) SmUDGase蛋白量
(mg/ml)
酶活(U) 比活力(U/mg) 得率(以酶活
计算)(%)
破碎上清 120 8 000 100
Co IMAC 16 75 0.25 7 200 1 787 90
Blue 16 95 0.19 6 942 2 295 86
成酶液 5.5 95 0.55 6 942 2 295 86
Table 3 Purification parameters
Fig.3 Enzyme activity and thermo sensitivity tests of SmUDGase (a) Kinetics of SmUDGase activity under different temperatures (b) Heat inactivation of UDGase from E.coli (Ecoli UDGase), Gadus morhua (Cod UDGase) and Scophthalmus maximus (SmUDGase) * P<0.05, ** P<0.01
Fig.4 Characterization of the adaptation of SmUDGase (a) SmUDGase activity in pH range 6.0-11.0 (b) SmUDGase activity under different concentrations of Na+ and K+ (c) SmUDGase activity under different concentrations of Mg2+ and Ca2+ (d) Comparison of inactivation of SmUDGase by heat and Ugi * P<0.05, ** P<0.01
[1]   Mary C L, Mark S B, James L , et al. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 1990,93:125-128.
[2]   Bitinaite J, Nichols N M . DNA cloning and engineering by uracil excision. Curr Protoc Mol Biol, 2009,3(21):3-21.
[3]   Bitinaite J, Rubino M, Varma K H , et al. USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res, 2007,35(6):1992-2002.
[4]   郑子君 . 脱氧尿嘧啶及尿嘧啶DNA糖基化酶抗PCR产物污染能力研究. 职业卫生与病伤, 2008,32(2):67-70.
[4]   Zheng Z J . Anti-contamination ability of dUTP/UDG system influorometric quantitative PCR, Journal of Occupational Health and Damage, 2008,32(2):67-70.
[5]   Liu B, Yang X, Wang K , et al. Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal Biochem, 2007,366(2):237-243.
[6]   郭兆彪, 张敏丽, 汪晓辉 等. 用尿嘧啶糖基化酶预防PCR污染的研究. 中国兽医科技, 1999,3(29):12-14.
[6]   Guo Z B, Zhang M L, Wang X H , et al. Study on prevention of PCR contamination by uracil DNA glycosylase. Chinese Journal of Veterinary Science and Technology, 1999,3(29):12-14.
[7]   Lindahl T . An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA, 1974,71(7):3649-3653.
[8]   Lindahl T, Ljungquist S, Siegert W , et al. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem, 1977,252(10):3236-3294.
[9]   Sandigursky M, Franklin W A . Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J Biol Chem, 2000,275(25):19146-19149.
[10]   Fárez-Vidal M, Gallego C, Ruiz-Pérez L , et al. Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease. Nucleic Acids Research, 2001,28(7):1549-1555.
[11]   Weiser B P, Rodriguez G, Cole P A , et al. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res, 2018,46(14):7169-7178.
[12]   Wu D, Chen L, Sun Q , et al. Uracil-DNA glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. J Biol Chem, 2014,289(22):15463-15473.
[13]   Chung Y, Hsu W . The UL2 open reading frame of bovine herpesvirus 1 encodes a Uracil-DNA glycosylase. Microbiol Immunol, 1996,40(12):949-953.
[14]   Lu C C, Huang H T, Wang J T , et al. Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol, 2007,81(3):1195-1208.
[15]   Lee H W, Dominy B N, Cao W . New family of deamination repair enzymes in uracil-DNA glycosylase superfamily. J Biol Chem, 2011,286(36):31282-31287.
[16]   Sobek H, Schmidt M, Frey B , et al. Heat-labile uracil-DNA glycosylase: purification and characterization. Federation of European Biochemical Societies, 1996,338:1-4.
[17]   Lanes O, Guddal P, Gjellesvik D , et al. Purification and characterization of a cold-adapted uracil-DNA glycosylase from atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part B, 2000,127 : 399-410.
[18]   Lanes Olav W N P, Guddal Per Henrik. Gjellesvik Dag Rune Cod uracil-DNA glycosylase,gene coding therefore,recombinant DNA containing said gene or operative parts thereof,a method for preparing said protein and the use of said protein or said operativie parts thereof in monitoring or controlling PCR.WO01/51623 A1, 2006-05-02.[2019-02-22] USA. .
[19]   Outzen H B G, Smal?s A O, Willassen N P . Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol B Biochem Mol Biol, 1996,115(1):33-45.
[20]   刘斌 . 荧光分子探针技术在基因表达产物研究中的应用. 长沙:湖南大学, 2007.
[20]   Liu B . The application of novel fluorescent molecule pro technology on analysis of gene expression products. Changsha: Hunan University, 2007.
[21]   杨渐, 俞昌喜, 许盈 , 等. 钴金属螯合亲和层析在hIGF-1融合蛋白分离纯化中的应用. 药物生物技术, 2013,20(3):220-224.
[21]   Yang J, Yu C X, Xu Y , et al. Purification of hIGF-1 fusion protein by using cobalt metal chelate affinity chromatography. Pharmaceutical Biotechnology, 2013,20(3):220-224.
[22]   赵翀, 王玲, 谢蜀生 , 等. Cibacron Blue亲和层析及应用. 生物化学杂志, 1994,10(5):621-625.
[22]   Zhao C, Wang L, Xie S S,et al.Preparation of cibacron blue sephadex and its application on chromatography. Chinese Biochemical Journal, 1994,10(5):621-625.
[23]   韩富亮, 袁春龙, 郭安鹊 , 等. 二喹啉甲酸法(BCA)分析蛋白多肽的原理、影响因素和优点. 食品与发酵工业2014, 40(11):202-207.
[23]   Han F L, Yuan C L, Guo A Q , et al. The principle,influence factors and advantages of bicinchoninic acid method(BCA) for protein and peptide assay. Food and Fermentation Industries, 2014,40(11):202-207.
[1] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[2] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[3] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[4] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[5] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[6] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[7] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[8] DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song. Current Progress in Recombinant Systems for Expression of Hydrogenases[J]. China Biotechnology, 2015, 35(5): 109-118.
[9] GUO Le, LIU Kun-mei, LI Min, ZHAO Hui, XU Guang-xian, DUAN Xiang-guo, HAN Xue-bo, YANG Hua, WANG Yu-jiong. Purification and Immunologic Study of Subunit Vaccines 3STaM(G)-K99 and 3STaM(S)-K99 with Tandem Copies of Mutant Heat-stable Enterotoxin STa and Colonization Factor K99 from Enterotoxigenic Escherichia coli[J]. China Biotechnology, 2013, 33(7): 18-24.
[10] YANG Bo, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Wei. Study of the Enzymatic Function of Myosin Cross Reactive Antigen from Bifidobacterium animalis[J]. China Biotechnology, 2012, 32(12): 30-36.
[11] GAO Bing-miao, LI Bao-zhu, WU Yong, LIN Bo, ZHU Xiao-peng, ZHANGSUN Dong-ting, LUO Su-lan. Expression, Purification and Identfication of Recombinant Conotoxin GeXIVAWT[J]. China Biotechnology, 2012, 32(09): 34-40.
[12] WEI Hai-Chao, ZHANG Yan, FAN Yao-Chun, LI Chuan-Yi, WEN Yu-Ling, CHEN Yuan-Ding. Expression of NSP1 of a Group A Human Rotavirus and Immunological Properties[J]. China Biotechnology, 2010, 30(03): 15-21.
[13] Kun CAI Jun YIN Hui WANG. The Recombinant Expression and Receptor-binding activity of the B subunit of Shiga-like toxin type Ⅱ[J]. China Biotechnology, 2008, 28(10): 23-27.
[14] . Progress in the Study of Heparinases[J]. China Biotechnology, 2007, 27(8): 116-124.
[15] . Expression,Purification of PUMA-BH3 Death Domain Peptide in E.coli and Identification of Its Pro-apoptotic Activity[J]. China Biotechnology, 2007, 27(7): 27-32.