Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (8): 24-32    DOI: 10.13523/j.cb.2005006
    
Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy
DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong()
College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China
Download: HTML   PDF(1058KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objectives: Many of biocatalytic redox reactions which are widely used in the production of chiral chemicals involve the regeneration of the coenzyme NADPH in situ. Alcohol dehydrogenases that regenerate NADPH with isopropanol as substrate have the advantages of high specific activity and easy separation of byproduct acetone, attracting more and more attention. Therefore, an alcohol dehydrogenase from Clostridium beijerinckii, namely CbADH, was chosen as the research object for its more considerable specific activity and the most applicable potentiality within present literatures. To solve the problem of poor soluble expression of CbADH in E. coli genetically engineered strains and the consequent enzyme activity as low as 2.31 U / mg DCW, the following studies were carried out. Methods: Firstly, different chaperone proteins were expressed by inducible plasmids to increase the soluble expression level of CbADH, and the results showed that molecular chaperone GroES-GroEL significantly improved the soluble expression of CbADH by 3.57 times more than the original strain, with enzyme activity of 11.18 U/mg DCW which is 4.83 times more than the original strain. Secondly, three other different GroES-GroEL expression strategies were examined: pET-28a(+) single plasmid co-expression, genomic enhancing expression of chaperone, and constitutive-pGro7/pET-28a(+) dual plasmid co-expression. Results: The results indicated that the constitutive-pGro7/pET-28a(+) dual plasmid co-expression strategy had the best effect which improved the soluble expression of CbADH by 8.07 times more than the oringinal strain, with a CbADH activity of 21.79 U/mg DCW, which was 9.43 times higher than the oringinal strain. Conclusions: This study not only lays the foundation for the industrial application of CbADH but also provides a reference for heterologous soluble protein expression.



Key wordsAlcohol dehydrogenase      Soluble heteroexpression      Chaperone      NADPH     
Received: 06 May 2020      Published: 10 September 2020
ZTFLH:  Q819  
Corresponding Authors: Li-rong YANG     E-mail: lryang@zju.edu.cn
Cite this article:

DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy. China Biotechnology, 2020, 40(8): 24-32.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005006     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I8/24

分子伴侣质粒 伴侣蛋白 启动子 诱导剂 抗性
pG-KJE8 DnaK-DnaJ-GrpE-GroES-GroEL araB Pzt-1 0.5g/ml L-Arabinose+5ng/ml Tetracyclin Cm
pGro7 GroES-GroEL araB 0.5g/ml L-Arabinose Cm
pKJE7 DnaK-DnaJ-GrpE araB 0.5g/ml L-Arabinose Cm
pG-Tf2 GroES-GroEL-Tf Pzt-1 5ng/ml Tetracyclin Cm
pTf16 Tf araB 0.5g/ml L-Arabinose Cm
Table 1 Information of molecular chaperone plasmid
Fig.1 Expression region structure of the co-expression plasmids
启动子名称 序列 相对强度
J23119 ttgacagctagctcagtcctaggtataatgctagc n/a
J23100 ttgacggctagctcagtcctaggtacagtgctagc 1
J23102 ttgacagctagctcagtcctaggtactgtgctagc 0.86
J23104 ttgacagctagctcagtcctaggtattgtgctagc 0.72
J23108 ctgacagctagctcagtcctaggtataatgctagc 0.51
J23110 tttacggctagctcagtcctaggtacaatgctagc 0.33
J23114 tttatggctagctcagtcctaggtacaatgctagc 0.10
Table 2 Information of constituent promoters
Fig.2 Schematic diagram of CRISPR genome editing modified promoter
Fig.3 SDS-PAGE analysis of molecular chaperones co-expression strains Lane M:molecular weight marker;Lane W:whole cell protein; Lane S:supernatant;Lane P:precipitation
采用策略 菌株名称 OD600 酶活(U/mg DCW)
出发菌株 CbADH-WT 5.91±0.34 2.31±0.3
分子伴侣共表达 A 6.24±0.38 11.18±0.96
B 5.27±0.2 3.61±0.21
C 5.17±0.31 3.98±0.14
D 7.19±0.24 4.17±0.35
E 5.97±0.23 2.88±0.09
单质粒共表达 F 5.4±0.24 10±0.35
G 5.23±0.32 7.89±0.46
H 4.88±0.28 8.02±0.43
I 5.09±0.19 12.99±0.89
基因组强化表达 J 5.23±0.35 9.13±0.31
K 5.31±0.37 7.26±0.18
L 5.28±0.25 2.3±0.24
组成型双质粒共表达 M 5.08±0.41 21.79±1.1
N 5.44±0.24 17.74±0.92
O 5.43±0.32 16.8±0.42
P 5.56±0.21 15.57±0.52
Q 5.79±0.13 15.08±0.46
R 5.55±0.32 14.82±0.32
S 5.32±0.26 12.35±0.67
Table 3 CbADH activity of different strategies
Fig.4 SDS-PAGE analysis of pET single plasmid co-expression strains Lane M: molecular weight marker;Lane W:whole cell protein; Lane S: supernatant;LaneP:precipitation
Fig.5 SDS-PAGE analysis of GroES-GroEL genomic over-expression strains Lane M: molecular weight marker; Lane W: whole cell protein; Lane S: supernatant; Lane P: precipitation
Fig.6 SDS-PAGE analysis of constitutive pGro7/GroES-GroEL and pET-28a(+)/CbADH dual plasmid co-expressed strains Lane M: molecular weight marker;Lane W:whole cell protein;Lane S:supernatant;Lane P:precipitation
Fig.7 Relationship between GroES-GroEL expression and CbADH activity
[1]   Fischer T, Pietruszka J. Key building blocks via enzyme-mediated synthesis. Topics in Current Chemistry, 2010,297:41-43.
[2]   Yin X, Liu Y, Meng L, et al. Rational molecular engineering of glutamate dehydrogenases for enhancing asymmetric reductive amination of bulky α-keto acids. Advanced Synthesis & Catalysis, 2019,361(4):803-812.
[3]   Van Der Donk W A, Zhao H. Recent developments in pyridine nucleotide regeneration. Current Opinion in Biotechnology, 2003,14(4):421-426.
doi: 10.1016/S0958-1669(03)00094-6
[4]   Kataoka M, Yamamoto K, Kawabata H, et al. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 1999,51(4):486-490.
doi: 10.1007/s002530051421 pmid: 10341431
[5]   Gallegos M T, Marques S, Ramos J L. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a sigma-70-dependent promoter or from sigma-70- and sigma-54-dependent tandem promoters according to the compound used for growth. Journal of Bacteriology, 1996,178(7-8):2356.
doi: 10.1128/JB.178.8.2356-2361.1996
[6]   Ying X, Ma K. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon thermococcus guaymasensis. Journal of Bacteriology, 2011,193(12):3009-3019.
doi: 10.1128/JB.01433-10
[7]   Widdel F, Wolfe R S. Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Archives of Microbiology, 1989,152(4):322-328.
doi: 10.1007/BF00425168
[8]   Hoelsch K, Sührer I, Heusel M. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Applied Microbiology & Biotechnology, 2013,97(6):2473-2481.
doi: 10.1007/s00253-012-4142-9 pmid: 22588502
[9]   Kumar A, Shen P S, Descoteaux S, et al. Cloning and expression of an NADP +-dependent alcohol dehydrogenase gene of entamoeba histolytica . Proceedings of the National Academy of Sciences of the United States of America, 1992,89(21):10188-10192.
[10]   Burdette D, Zeikus J G. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2° Adh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase. Biochemical Journal, 1994,302(1):163-170.
doi: 10.1042/bj3020163
[11]   Peretz M, Bogin O, Tel-Or S, et al. Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe, 1997,3(4):259-270.
doi: 10.1006/anae.1997.0083 pmid: 16887600
[12]   Korkhin Y, Kalb A J, Peretz M, et al. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. Journal of Molecular Biology, 1998,278(5):967-981.
doi: 10.1006/jmbi.1998.1750 pmid: 9836873
[13]   Bogin O, Levin I, Hacham Y, et al. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii: contribution of salt bridging. Protein Science, 2002,11(11):2561-2574.
doi: 10.1110/ps.0222102 pmid: 12381840
[14]   Bogin O, Peretz M, Burstein Y. Probing structural elements of thermal stability in bacterial oligomeric alcohol dehydrogenases. I. construction and characterization of chimeras consisting of secondary ADHs from Thermoanaerobacter brockii and Clostridium beijerinckii. Letters in Peptide Science, 1998,5(5-6):399-408.
[15]   Goihberg E, Dym O, Tel-Or S, et al. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Protns Structure Function and Bioinformatics, 2006,66(1):196-204.
[16]   Ismaiel A A, Zhu C X, Colby G D, et al. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. Journal of Bacteriology, 1993,175(16):5097-5105.
doi: 10.1128/jb.175.16.5097-5105.1993 pmid: 8349550
[17]   Jiang Y, Chen B, Duan C, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied & Environmental Microbiology, 2015,81(7):2506-2514.
doi: 10.1128/AEM.04023-14 pmid: 25636838
[18]   Kaiser C M, Chang H C, Agashe V R, et al. Real-time observation of trigger factor function on translating ribosomes. Nature, 2006,444(7118):455-460.
doi: 10.1038/nature05225 pmid: 17051157
[19]   Mayer M P, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular & Molecular Life Sciences, 2005,62(6):670-684.
pmid: 15770419
[20]   Hartl F U, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002,295(5561):1852-1858.
doi: 10.1126/science.1068408 pmid: 11884745
[21]   Tang Y C, Chang H C, Roeben A, et al. Structural features of the GroEL-GroES Nano-Cage required for rapid folding of encapsulated protein. Cell, 2006,125(5):903-914.
doi: 10.1016/j.cell.2006.04.027 pmid: 16751100
[22]   Clare D K, Bakkes P J, Van Heerikhuizen H, et al. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature, 2009,457(7225):107-110.
doi: 10.1038/nature07479 pmid: 19122642
[1] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[2] Qi-zai WANG,Hong-chao WANG,Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN. Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina[J]. China Biotechnology, 2018, 38(9): 12-18.
[3] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[4] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[5] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[6] WANG Hong chao, ZHANG Chen, CHEN Dian ning, QIAO Ju yuan, CHEN Hai qin, GU Zhen nan, ZHANG Hao, CHEN Wei, CHEN Yong quan. Cloning, Expression and Function Analysis of Methylenetetrahydrofolate Dehydrogenase from Mortierella alpina[J]. China Biotechnology, 2016, 36(11): 23-29.
[7] LI Qian-qian, LI Zhong-yuan, FENG Duo, HUANG Huo-qing, HAN Cui-xiao, YANG Pei-long, YAO Bin, GAO Wei. Optimizing Soluble Expression and Inclusion Body Renature Research of β-Propeller Phytase of Bacillus sp. HJB17 in E.coli[J]. China Biotechnology, 2012, 32(08): 49-55.
[8] JIANG Jin-ju, ZHANG Hong-yu, REN Bao-yong, SHI Fei, CUI Yu-lin, QIN Song. Construction of Alcohol-producing Escherichia coli strains and Improvement of Biological Activity Detection Method for the Engineered Strains[J]. China Biotechnology, 2011, 31(8): 73-78.
[9] LI Jiang-jiao, ZHU Wu-yang, HE Ying, LIANG Guo-dong. Optimizing the Soluble Expression Conditions of Sindbis Virus E2 Envelope Protein[J]. China Biotechnology, 2011, 31(02): 62-68.
[10] CHENG Lei, WANG Lei-lei, CHENG Bei-jiu, FAN Jun. Prokaryotic Expression and Functional Analysis of Maize BAS1(2-Cys peroxiredoxinA)[J]. China Biotechnology, 2010, 30(11): 24-29.
[11] LONG Zong-Juan, DIAO Jiao-Gong, WEI Lan-Zhen, WANG Quan-Chi, MA Wei-Min. Construction of the ndhO Gene Inactivation Mutant of the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Using the Homologous Recombination Strategy and its Molecular Identification[J]. China Biotechnology, 2010, 30(09): 31-35.
[12] . Study of immobilization of yeast alcohol dehydrogenase cross-linked magnetic chitosan microspheres[J]. China Biotechnology, 2008, 28(7): 71-77.
[13] Xiao Ye-Chen yuxiaqin qin xiejiasen xie liu xiaoju liu yangwanying yang . Fusion Protein on Sumo Molecular Chaperone and Antifungal Peptide Drs Help to Soluble Expression[J]. China Biotechnology, 2007, 27(12): 22-25.
[14] . Soluble Expression and Purification of Snake Venoms Fihrino(geno)lytic Emzyme Alfimeprase in E.coli[J]. China Biotechnology, 2006, 26(03): 31-36.
[15] . Molecular Chaperones and Protein Folding[J]. China Biotechnology, 2006, 26(0): 157-161.