Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 58-66    DOI: 10.13523/j.cb.20191007
    
Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria
CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong()
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML   PDF(2045KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Firstly,five expressing NADH-dependent glutamate dehydrogenase E.coli engineering bacterias are constructed,get a glutamate dehydrogenase AxyGDH from Amphibacillus xylanus.The optimum temperature is 60℃ and pH is 8.0,the specific enzyme activity is (903.1±24.6)U/mg,the half-life is 167h at this condition.Then, decide the enzyme production conditions of E.coli BL21(DE3)/pET-28a(+)-AxyGDH: Inducer IPTG concentration 0.7mmol/L,induction temperature 25℃.The optimized medium composition: Glycerol 11.3g/L, yeast powder 16.3g/L, MgSO4·7H2O 0.62g/L,NaCl 0.5g/L, Na2HPO4·12H2O 17.1g/L,KH2PO4 3g/L,NH4Cl 1.5g/L.At last,the fermentation enzyme activity of AxyGDH is (9 066±45)U/ml in the 10L tank fermentation when controlling the specific growth rate is 0.2h -1,which is 51.1 times than that of LB medium.It lays the foundation for glutamate dehydrogenase low cost production.



Key wordsGlutamate dehydrogenase      Heterologous expression      Specific enzyme activity      Stability Fermentation     
Received: 12 March 2019      Published: 12 November 2019
ZTFLH:  Q815  
Corresponding Authors: Li-rong YANG     E-mail: lryang@zju.edu.cn
Cite this article:

CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria. China Biotechnology, 2019, 39(10): 58-66.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191007     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/58

Fig.1 SDS-PAGE of glutamate dehydrogenase Lane M:Marker; Lane 1-3:CsyGDH; Lane 4-6:AxyGDH; Lane 9-7:CdiGDH; Lane 12-10:PenGDH; Lane 15-13:BsuGDH
Fig.2 Enyme activity(a) and stability(b) of cell crude extract
Fig.3 SDS-PAGE of purifying AxyGDH Lane M:Marker; Lane 1; Lane 2: AxyGDH
Fig.4 Optimal temperature(a)and pH(b)of AxyGDH
Temperature (℃) kD (h-1) [11] t1/2 (h)
60 0.004 167.0
70 0.034 20.1
80 0.070 9.9
Table 1 Enzyme activity half life of AxyGDH at different temperature
Fig.5 Influence of IPTG concentration(a)and induction temperature(b)on activity
Fig.6 Effect of carbon(a) and nitrogen(b) source on enzyme activity and bacteria growth
因素 水平(g/L)
-1 0 1
安琪酵母粉 14 16 18
甘油 9 11 13
MgSO4·7H2O 0.5 0.7 0.9
Table 2 Factors and levels for response surface method
Fig.7 Response surface and contour map of X1,X2(a);X2,X3(b);X1,X3(c) to enzyme activity
Fig.8 Effect of different specific growth rate on enzyme production(a)bacteria growth process and enzyme production curve when controlling the specific growth rate is 0.20h-1(b)
[1]   Son HF ,KimI K,KimK J.Structural insights into domain movement and cofactor specificity of glutamate dehydrogenase from Corynebacterium glutamicum.Biochemical and Biophysical Research Communications, 2015,459(3):387-392.
[2]   Amenabar MJ ,Blamey JM. Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven.Bmb Reports, 2012,45(2):91-95.
[3]   Engel PC ,Dalziel K. The equilibrium constants of the glutamate dehydrogenase systems.Biochemical Journal, 1967,105(2):691-695.
[4]   ShettyN ,WrenM W D,CoenP G.The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples:a meta-analysis.Journal of Hospital Infection, 2011,77(1):1-6.
doi: 10.1016/j.jhin.2010.07.024
[5]   Hong EY, Cha M, Yun H, et al. Asymmetric synthesis of l-tert-leucine and l-3-hydroxyadamantylglycine using branched chain aminotransferase.Journal of Molecular Catalysis B Enzymatic, 2010,66(1-2):228-233.
[6]   Khan M IH ,ItoK, Kim H,et al.Molecular properties and enhancement of thermostability by random mutagenesis of glutamate dehydrogenase from Bacillus subtilis.Journal of the Agricultural Chemical Society of Japan, 2005,69(10):10-16.
[7]   SusanaD ,Francisco P, Pire C, et al.Gene cloning,heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei.Extremophiles, 2006,10(2):105-115.
doi: 10.1007/s00792-005-0478-8
[8]   GuoF ,ZhengH, Cheng Y,et al.Medium optimization for ε‐poly‐L‐lysine production by Streptomyces diastatochromogenes using response surface methodology.Letters in Applied Microbiology, 2018,66(2):124-131.
[9]   范新炯, 莫忠兴, 张曼曼, 等产菌产菊酯降解酶重组菌的高密度发酵工艺优化.中山大学学报,2018,57(3):67-74.
[9]   Fan XJ, Mo Z X, Zhang M M,et al.Enhancing production of a novel pyrethroid-hydrolyzing enzyme by high density fermentation of Escherichia coli.Journal of Sun Yat-sen University, 2018,57(3):67-74.
[10]   XuS, Fang L, Gong X F,et al.Optimization on modification of sepiolite by microwave assisted ferrous sulfate treatment via response surface methodology(RSM).Journal of Functional Materials, 2016,47(2):2235-2241.
[11]   FengY, Liu S, Jiao Y,et al.Improvement of L-asparaginase thermal stability by regulating enzyme kinetic and thermodynamic states.Process Biochemistry, 2018,71(2):45-52.
[12]   Reddy L VA ,WeeY J, Yun J S,et al.Optimization of alkaline protease production by batch culture of Bacillus sp.RKY3 through Plackett-Burman and response surface methodological approaches. Bioresource Technology, 2008,99(7):2242-2249.
[1] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[2] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[3] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[4] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[5] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[6] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[7] HE Lin-wei, LIU Zhang-min, FENG Yan, CUI Li. High Throughput Screening Method and Application for L-glutamate Specific Aminotransferase[J]. China Biotechnology, 2017, 37(8): 59-65.
[8] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[9] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[10] TAO Wen-na, XIA Li-qiu, DING Xue-zhi, TANG Ying. Cloning and Function Study of amtS Gene from Saccharopolyspora spinosa[J]. China Biotechnology, 2015, 35(2): 25-30.
[11] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[12] YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023[J]. China Biotechnology, 2014, 34(8): 47-53.
[13] LUO Man-jie, XIE Yuan, QIAN Zhi-gang, FENG Yan, YANG Guang-yu. High-level Heterogenous Expression of a Hyperthermophilic Esterase in Different Hosts[J]. China Biotechnology, 2014, 34(12): 36-44.
[14] QIAN Hui, ZHANG Chong, LU Zhao-xin, BIE Xiao-mei, ZHAO Hai-zhen, LV Feng-xia. Expression of Paenibacillus polymyxa EJS-3 Fibrinolytic Enzyme Gene in Pichia pastoris[J]. China Biotechnology, 2014, 34(12): 45-50.
[15] LI Si-jia, WANG Ya-wei, FU Zheng, WANG Wen-jun, Ossi Turunen, XIONG Hai-rong. Expression of Thermomyces lanuginosus Xylanase 1YNA and Its Disulphide Bridge Mutant in Pichia Pastoris[J]. China Biotechnology, 2013, 33(3): 74-79.