Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (8): 23-30    DOI: 10.13523/j.cb.20170804
    
Studies on the 3-Ketosteriod-1-Dehydrogenation of Steroid Hormone by Cellular lysates of Mycobacterium
QIN Meng-fei, SUN Hong, SONG Hao
School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(826KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

9β, 11β-Epoxypregn-4-ene-17α, 21-diol-3, 20-dione 21-acetate (Ⅰ) is a substrate for the production of 9β, 11β-Epoxypregn-1, 4-diene-17α, 21-diol-3, 20-dione (Ⅳ), which is a key precursor for the production of many 9-fluoro-substituted corticosteroid hormones. By comparing whole cells catalysis and cellular lysates conversion, it was found that whole cells of Mycobacterium sp. MS136 could only convertⅠto 9β, 11β-Epoxypregn-4-ene-17α, 21-diol-3, 20-dione (Ⅱ), and Ⅰ can be effectively converted toⅣ by cellular lysates.The reaction order is that Ⅰ is spontaneously hydrolyzed to Ⅱ and Ⅱundergoes C1, 2-dehydrogenation reaction toⅣ.In order to improve the productivity of Ⅳ, the key genes kstD, kstD3 and kstDM encoding C1, 2-dehydrogenase (KSTD)were overexpressed in Mycobacterium sp. MS136 to enhance the C1, 2-dehydrogenation reaction rate, and the results showed that 1 g/L substrate Ⅰ can be converted by recombinant strain MS136-kstDM cellular lysates at pH 7.0, the productivity of Ⅳreached 78.4% after 45 h, which is 38.9% higher than original strain.The reaction rate is enhanced by optimizing the pH, and the results showed that 1 g/L substrate (Ⅰ) can be converted by recombinant strain MS136-kstDM cellular lysates at pH 7.5, the productivity of Ⅳreached 92.8% after 45 h, which was 63.4% higher than original strain.



Key words9β, 11β-Epoxypregn-1, 4-diene-17α, 21-diol-3, 20-dionecellular      Lysates of Mycobacterium 3-ketosteriod-1-dehydrogenase     
Received: 23 February 2017      Published: 25 August 2017
ZTFLH:  G819  
Cite this article:

QIN Meng-fei, SUN Hong, SONG Hao. Studies on the 3-Ketosteriod-1-Dehydrogenation of Steroid Hormone by Cellular lysates of Mycobacterium. China Biotechnology, 2017, 37(8): 23-30.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170804     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I8/23

[1] Tong W Y, Dong X. Microbial biotransformation:recent developments on steroid drugs. Recent Pat Biotechnol, 2009, 3(2):141-153.
[2] Croxatto H B. Progestin implants. Steroids, 2000, 65(10-11):681-685.
[3] Hughes D T, Sperandio V. Inter-kingdom signalling:communication between bacteria and their hosts. Nat Rev Microbiol, 2008, 6(2):111-120.
[4] Bragin J, Saowakhon S, Manosroi A. A novel one-step biotransformation of cortexolone-21-acetate to hydrocortisone acetate using Cunninghamella blakesleeana ATCC 8688a. Enzyme Microb Technol, 2007, 41(3):322-325.
[5] Funder J W. Minireview:aldosterone and mineralocorticoid receptors:past, present, and future. Endocrinology, 2010, 151(11):5098-5102.
[6] García J L, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol, 2012, 5(6):679-699.
[7] Bragin E Y, Shtratnikova V Y, Dovbnya D V, et al. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol, 2013, 138(10):41-53.
[8] Xie R, Shen Y, Qin N, et al. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. J Ind Microbiol Biotechnol, 2015, 42(4):507-513.
[9] Cruz A, Angelova B, Fernandes P, et al. Study of key operational parameters for the side-chain cleavage of sitosterol by free mycobacterial cells in bis-(2-ethylhexyl) phthalate. Biocatal Biotransform, 2004, 22(3):189-194.
[10] Fokina V V, Sukhodol'skaya G V, Gulevskaya S A, et al. The 1(2)-dehydrogenation of steroid substrates by Nocardioides simplex VKM Ac-2033D. Microbiology, 2003, 72(1):24-29.
[11] Fokina V V, Donova M V. 21-Acetoxy-pregna-4(5),9(11),16(17)-triene-21-ol-3,20-dione conversion by Nocardioides simplex VKM Ac-2033D. J Steroid Biochem Mol Biol, 2003, 87(4-5):319-325.
[12] Donova M V. Transformation of steroids by actinobacteria:a review. Applied Biochemistry and Microbiology, 2007, 43(1):5-18.
[13] Donova M V, Egorova O V. Microbial steroid transformations:Current state and prospects. Appl Microbiol Biotechnol, 2012, 94(6):1423-1447.
[14] Fernandes P, Cruz A, Angelova B, et al. Microbial conversion of steroid compounds:Recent developments. Enzyme Microb Technol, 2003, 32(6):688-705.
[15] Wang F Q, Yao K, Xu L Q, et al. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols. Metabolic Engineering, 2014, 24:181-191.
[16] Wang F Q, Wei W, Fan S Y, et al. Inactivation and augmentation of the primary 3-ketosteroid-Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01:biotransformation of soybean phytosterols to 4-androstene-3, 17-dione or 1, 4-androstadiene-3, 17-dione. Appl Environ Microbiol, 2010, 76(13):4578-4582.
[17] Zhang W Q, Shao M L, Rao Z M, et al. Bioconversion of 4-androstene-3,17-dione toandrost-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenasefrom Mycobacterium neoaurum JC-12. J Steroid Biochem MolBiol, 2013, 135(1):36-42.
[18] Li Y, Lu F, Sun T, et al. Expression of ksdD gene encoding 3-ketosteroid-Δ1-dehydrogenase from Arthrobacter simplex in Bacillus subtilis. Lett Appl Microbiol, 2007, 44(5):563-568.
[19] Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols. Bioresource Technology, 2008, 99(15):6725-6737.
[20] Shao M, Zhang X, Rao Z, et al. Enhanced production of androst-1,4-diene-3,17-dione by Mycobacterium neoaurum JC-12 using three-stage fermentation strategy. PLoS One, 2015, 10(9):e0137658.
[21] Flett F, Mersinias V, Smith C P. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett, 1997, 155(2):223-229.
[22] Van D G, Hessels G I, Van G R, et al. Targeted disruption of the kstD geneencoding 3-ketosteroid-Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis SQ1. Appl Environ Microbiol, 2000, 66(5):2029-2036.
No related articles found!