Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (11): 82-89    DOI: 10.13523/j.cb.2007046
    
Advances and Applications of Recombinant Mussel Foot Proteins
XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha()
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
Download: HTML   PDF(9174KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mussel foot proteins are a kind of protein complex secreted by mussel foot gland, which have strong adhesion to the surface of substrates due to reactions. Because of its strong adhesion, biodegradability and excellent biocompatibility in the marine environments, it is often used as bio-medical adhesives. However, the extraction of natural proteins is limited by the source of raw materials, and the complex process leads to high price, which hinders the further application and development of mussel foot proteins. The latest development of microbial synthesis provides a new way of thinking for mussel foot protein production and has the significance of expanding the scale of production. The production methods of mussel foot protein by genetic engineering were reviewed, and the applications of recombinant proteins in adhesion antifouling coatings and tissue engineering materials were summarized. At the same time, the research direction is prospected, and it is pointed out that the key technology for the further development of recombinant mussel foot proteins is to analyze the structure activity and hierarchical structure of the protein, on the basis of which the expression level of the protein is improved, so as to obtain more derivatives with biological efficacy.



Key wordsMussel proteins      Recombinant expression      Biological adhesives     
Received: 26 July 2020      Published: 11 December 2020
ZTFLH:  Q78  
  Q816  
Corresponding Authors: Sha LI     E-mail: lisha@njtech.edu.cn
Cite this article:

XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins. China Biotechnology, 2020, 40(11): 82-89.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2007046     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I11/82

Fig.1 Distribution of different mussel proteins in the byssus
Protein type Molecular weight(kDa) Isoelectric point(pI) DOPA(mol%) Distribution
Mfp-1 ≈110 10.5 10-15 The cuticle layer of the byssus
Mfp-2 42-47 9-10 2-3 Plaque foam
Mfp-3 5-7 >10.5 20-25 Primer layer
Mfp-4 93 9 2 Thread collagen anchor
Mfp-5 9.5 9.5 25-30 Primer layer
Mfp-6 11.6 9.5 <5 Primer layer
Table 1 Comparisons of properties of different types of mussel foot proteins
Host Origin Protein
type
Expressed fragment Molecular
weight
(kDa)
Expression Reference
Escherichia
coli
Mytilus
edulis
Mefp-1 6 decapeptide repeats 7 Inclusion body [8]
7 decapeptide repeats; fused with OmpA signal peptide at N-terminus 8 The soluble expression was twice higher than without OmpA [18]
Mytilus
galloprovinciali
Mgfp-5 Full-length 13.5 ≈ 40% of total cell proteins; mainly soluble [16]
Mgfp-3A Full-length 7 ≈56% of total cell proteins; half soluble [17]
In vivo DOPA incorporation by TyrRS 7 [23]
fp-151 6 Mfp-1 decapeptide repeats at each Mfp-5 terminus 24.5 ≈40% of total cell proteins; inclusion body [20]
Co-expression with tyrosinase 24.5 Mainly soluble [22]
fp-353 Mfp-3A at each Mfp-5 terminus 22 ≈21% of total cell proteins; inclusion body [21]
Mytilus
coruscus
Mcofp-1 12 decapeptide repeats 40.5 Soluble [11]
Mcofp-3 Full-length 9.18 Inclusion body [12]
Perna viridis Pvfp-1
(R-240)
8 decapeptide repeats 26.78 Soluble [13]
Pvfp-1
(C-237)
C-terminus non repetitive area 25.58 Soluble [13]
Yeast Mytilus
californianus
Mcfp-3 Fused with first 9 amino acids of HA0 at N-terminus 7 Soluble [26]
Insect Sf9
cells
Mytilus
galloprovinciali
fp-151 6 Mfp-1 decapeptide repeats at each Mfp-5 terminus 24.5 ≈50% of total cell proteins; soluble [27]
Chicory Mytilus
galloprovinciali
Mgfp-5 Full-length The expression rate in T1 generation was 58.70% [29]
Table 2 Advances in the production of mussel foot proteins by genetic engineering
[1]   Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science, 2010,328(5975):216-220.
doi: 10.1126/science.1181044 pmid: 20203014
[2]   Petrone L, Kumar A, Sutanto C N, et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nature Communications, 2015,6(1):8737.
doi: 10.1038/ncomms9737
[3]   Hwang D S, Waite J H. Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3: analysis by circular dichroism. Protein Science, 2012,21(11):1689-1695.
doi: 10.1002/pro.2147
[4]   Holten-Andersen N, Waite J H. Mussel-designed protective coatings for compliant substrates. Journal of Dental Research, 2008,87(8):701-709.
doi: 10.1177/154405910808700808 pmid: 18650539
[5]   Kan Y, Danner E W, Israelachvili J N, et al. Boronate complex formation with Dopa containing mussel adhesive protein retards ph-induced oxidation and enables adhesion to mica. PLoS One, 2014,9(10):e108869.
pmid: 25303409
[6]   Yu J, Wei W, Danner E, et al. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chemical Biology, 2011,7(9):588-590.
doi: 10.1038/nchembio.630 pmid: 21804534
[7]   Shin M, Shin J Y, Kim K, et al. The position of lysine controls the catechol-mediated surface adhesion and cohesion in underwater mussel adhesion. Journal of Colloid and Interface Science, 2020,563:168-176.
doi: 10.1016/j.jcis.2019.12.082 pmid: 31874305
[8]   Kitamura M, Kawakami K, Nakamura N, et al. Expression of a model peptide of a marine mussel adhesive protein in Escherichia coli and characterization of its structural and functional properties. Journal of Polymer Science Part A: Polymer Chemistry, 1999,37(6):729-736.
[9]   Hwang D S, Yoo H J, Jun J H, et al. Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl Environ Microbiol, 2004,70(6):3352-3359.
doi: 10.1128/AEM.70.6.3352-3359.2004 pmid: 15184131
[10]   Hwang D S, Gim Y, Cha H J. Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnology Progress, 2005,21(3):965-970.
doi: 10.1021/bp050014e pmid: 15932281
[11]   蒋臻, 刘加鹏, 杨丙晔, 等. 厚壳贻贝粘附蛋白十肽重复序列的表达及功能分析. 中国生物化学与分子生物学报, 2010,26(3):275-282.
[11]   Jiang Z, Liu J P, Yang B Y, et al. Expression and functional analysis of deceptide repeat sequence of adhesive protein in Mytilus coruscus. Chinese Journal of Biochemistry and Molecular Biology, 2010,26(3):275-282.
[12]   李楠楠, 谭亮, 王智平, 等. 厚壳贻贝足丝黏附蛋白 mfp-3 重组表达及黏附功能分析. 中国生物化学与分子生物学报, 2011,27(9):851-857.
[12]   Li N N, Tan L, Wang Z P, et al. Recombinant expression and adhesion function analysis of thick-shell mussel foot silk adhesion protein mfp-3. Chinese Journal of Biochemistry and Molecular Biology, 2011,27(9):851-857.
[13]   Jiang Z, Du LN, Ding X Y, et al. A novel recombinant bioadhesive designed from the non-repeating region of Perna viridis foot protein-1. Materials Science and Engineering: C, 2012,32(5):1280-1287.
[14]   Guerette P A, Hoon S, Seow Y, et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nat Biotechnol, 2013,31(10):908-915.
doi: 10.1038/nbt.2671 pmid: 24013196
[15]   Santonocito R, Venturella F, Dal Piaz F, et al. Recombinant mussel protein Pvfp-5β: A potential tissue bioadhesive. J Biol Chem, 2019; 294(34):12826-12835. DOI: 10.1074/jbc.RA119.009531.
doi: 10.1074/jbc.RA119.009531 pmid: 31292195
[16]   Choi Y S, Kang D G, Lim S, et al. Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material. Biofouling, 2011,27(7):729-737.
doi: 10.1080/08927014.2011.600830 pmid: 21770718
[17]   Yang B, Kang D G, Seo J H, et al. A comparative study on the bulk adhesive strength of the recombinant mussel adhesive protein fp-3. Biofouling, 2013,29(5):483-490.
doi: 10.1080/08927014.2013.782541 pmid: 23668263
[18]   Lee S J, Han Y H, Nam B H, et al. A novel expression system for recombinant marine mussel adhesive protein Mefp1 using a truncated OmpA signal peptide. Molecules & Cells, 2008,26(1):34-40.
pmid: 18511886
[19]   吕玉伟, 吕亚维, 杨泽熵, 等. 贻贝蛋白 Mgfp-5 的原核表达与纯化. 西北大学学报(自然科学版), 2016, (3):16.
[19]   Lv Y W, Lv Y W, Yang Z S, et al. Prokaryotic expression and purification of mussel protein Mgfp-5. Journal of Northwest University (Natural Science Edition), 2016, (3):16.
[20]   Hwang D S, Gim Y, Yoo H J, et al. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials, 2007,28(24):3560-3568.
doi: 10.1016/j.biomaterials.2007.04.039 pmid: 17507090
[21]   Gim Y, Hwang D S, Lim S, et al. Production of fusion mussel adhesive fp‐353 in Escherichia coli. Biotechnology Progress, 2008,24(6):1272-1277.
doi: 10.1002/btpr.65 pmid: 19194941
[22]   Choi Y S, Yang Y J, Yang B, et al. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli. Microbial Cell Factories, 2012,11(1):139.
[23]   Yang B, Ayyadural N, Yun H, et al. In vivo residue-specific Dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. Angewandte Chemie International Edition, 2014,53(49):13360-13364.
doi: 10.1002/anie.201406099 pmid: 25195781
[24]   Jeong Y S, Yang B, Yang B, et al. Enhanced production of Dopa-incorporated mussel adhesive protein using engineered translational machineries. Biotechnology and Bioengineering, 2020,117(7):1961-1969.
doi: 10.1002/bit.27339 pmid: 32196642
[25]   李楠楠, 王智平, 鲁涛, 等. 厚壳贻贝足丝盘黏附蛋白 mcofp-3 的重组真核表达. 生物技术通报, 2010,1(12):148-153.
[25]   Li N N, Wang Z P, Lu T, et al. Recombinant eukaryotic expression of thick-shelled mussel foot silk disc adhesion protein mcofp-3. Biotechnology Bulletin, 2010,1(12):148-153.
[26]   Platko J D, Deeg M, Thompson V, et al. Heterologous expression of Mytilus californianus foot protein three (Mcfp-3) in Kluyveromyces lactis. Protein Expression & Purification, 2008,57(1):0-62.
[27]   Lim S, Kim K R, Choi Y S, et al. In vivo post‐translational modifications of recombinant mussel adhesive protein in insect cells. Biotechnology Progress, 2011,27(5):1390-1396.
doi: 10.1002/btpr.662 pmid: 21732552
[28]   吕玉伟, 张雨靖, 吕亚维, 等. 贻贝粘蛋白Mgfp-5基因在烟草中的转化. 基因组学与应用生物学, 2016,35(1):180-190.
[28]   Lv Y W, Zhang Y J, Lv Y W, et al. Transformation of mussel mucin Mgfp-5 gene in tobacco. Genomics and Applied Biology, 2016,35(1):180-190.
[29]   吕亚维. 贻贝粘合蛋白 Mgfp-5 基因在菊苣中的表达研究. 西安:西北大学, 2018.
[29]   Lv Y W. Study on the expression of mussel adhesion protein Mgfp-5 gene in chicory. Xi’an:Northwest University, 2018.
[30]   Kim H J, Hwang B H, Lim S, et al. Mussel adhesion-employed water-immiscible fluid bioadhesive for urinary fistula sealing. Biomaterials, 2015,72:104-111.
doi: 10.1016/j.biomaterials.2015.08.055 pmid: 26352517
[31]   Jo Y K, Seo J H, Choi B H, et al. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Applied Materials & Interfaces, 2014,6(22):20242-20253.
doi: 10.1021/am505784k pmid: 25311392
[32]   Zhong C, Gurry T, Cheng A A, et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nature Nanotechnology, 2014,9(10):858-866.
doi: 10.1038/nnano.2014.199 pmid: 25240674
[33]   Zhang C, Huang J F, Zhang J C, et al. Engineered Bacillus subtilis biofilms as living glues. Materials Today, 2019,4(28):40-48.
[34]   Qi H S, Zheng W W, Zhou X, et al. A mussel-inspired chimeric protein as a novel facile antifouling coating. Chemical Communications, 2018,54(80):11328-11331.
doi: 10.1039/c8cc05298k pmid: 30239536
[35]   Qi H S, Zheng W W, Zhang C, et al. Novel mussel-inspired universal surface functionalization strategy: Protein-based coating with residue-specific post-translational modification in vivo. ACS Applied Materials & Interfaces, 2019,11(13):12846-12853.
[36]   Qi H S, Zhang C, Guo H S, et al. Bioinspired multifunctional protein coating for antifogging, self-cleaning, and antimicrobial properties. ACS Applied Materials & Interfaces, 2019,11(27):24504-24511.
doi: 10.1021/acsami.9b03522 pmid: 31257848
[37]   Jeon E Y, Hwang B H, Yang Y J, et al. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials, 2015,67:11-19.
doi: 10.1016/j.biomaterials.2015.07.014 pmid: 26197411
[38]   Hwang D S, Waite J H, Tirrell M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid-recombinant mussel adhesive protein coatings on titanium. Biomaterials, 2010,31(6):1080-1084.
doi: 10.1016/j.biomaterials.2009.10.041 pmid: 19892396
[39]   Jo Y K, Choi B H, Kim C S, et al. Diatom‐inspired silica nanostructure coatings with controllable microroughness using an engineered mussel protein glue to accelerate bone growth on titanium‐based implants. Advanced Materials, 2017,29(46):1704906.
[40]   Hwang D S, Sim S B, Cha H J. Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials, 2007,28(28):4039-4046.
doi: 10.1016/j.biomaterials.2007.05.028 pmid: 17574667
[41]   Choi B H, Choi Y S, Kang D G, et al. Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides. Biomaterials, 2010,31(34):8980-8988.
doi: 10.1016/j.biomaterials.2010.08.027 pmid: 20832110
[1] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[2] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[3] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[4] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[5] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[6] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[7] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[8] DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song. Current Progress in Recombinant Systems for Expression of Hydrogenases[J]. China Biotechnology, 2015, 35(5): 109-118.
[9] YANG Bo, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Wei. Study of the Enzymatic Function of Myosin Cross Reactive Antigen from Bifidobacterium animalis[J]. China Biotechnology, 2012, 32(12): 30-36.
[10] GAO Bing-miao, LI Bao-zhu, WU Yong, LIN Bo, ZHU Xiao-peng, ZHANGSUN Dong-ting, LUO Su-lan. Expression, Purification and Identfication of Recombinant Conotoxin GeXIVAWT[J]. China Biotechnology, 2012, 32(09): 34-40.
[11] WEI Hai-Chao, ZHANG Yan, FAN Yao-Chun, LI Chuan-Yi, WEN Yu-Ling, CHEN Yuan-Ding. Expression of NSP1 of a Group A Human Rotavirus and Immunological Properties[J]. China Biotechnology, 2010, 30(03): 15-21.
[12] Kun CAI Jun YIN Hui WANG. The Recombinant Expression and Receptor-binding activity of the B subunit of Shiga-like toxin type Ⅱ[J]. China Biotechnology, 2008, 28(10): 23-27.
[13] . Progress in the Study of Heparinases[J]. China Biotechnology, 2007, 27(8): 116-124.
[14] . Expression,Purification of PUMA-BH3 Death Domain Peptide in E.coli and Identification of Its Pro-apoptotic Activity[J]. China Biotechnology, 2007, 27(7): 27-32.
[15] . Overexpression of the fusion gene encoding bovine antimicrobial peptides Bac7-Bac5 in Escherichia coli, and purification and antimicrobial activity of the fusion protein[J]. China Biotechnology, 2007, 27(3): 65-70.