Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (9): 94-100    DOI: 10.13523/j.cb.20160912
    
Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression
YU Xiao-chun1, MA Shi-liang2
1 College of Food Science, Shenyang Agricultural University, Shenyang 110161, China;
2 College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110161, China
Download: HTML   PDF(569KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aspergillus oryzae is a very important fungus in the fermentation of traditional foods. Filamentous fungus Aspergillus oryzae has been utilized as a cell factory for heterologous protein production because of its high protein secretory capacity and food-safety properties. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of A. oryzae in biotechnology. The advances in genomics and transformation system which support the idea that A. oryzae is an ideal production hosts was focused. Whereas there are bottlenecks during heterologous proteins production in A. oryzae compared to high yields of homologous proteins. The strategies for improving heterologous protein production such as disruption of local gene, promoter and fusion expression were also discussed. Finally, application and high potential in enzymes and secondary metabolite production of the engineering A. oryzae were also reviewed.



Key wordsGenomics      Aspergillus oryzae      Transformation system      Metabolic engineering      Heterologous expression     
Received: 26 February 2016      Published: 25 September 2016
ZTFLH:  Q815  
Cite this article:

YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression. China Biotechnology, 2016, 36(9): 94-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160912     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I9/94

[1] Abe K, Gomi K, Hasegawa F, et al. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia,2006, 162(3):143-153.
[2] Cristiane A U, Gaku T, Hirofumi W, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol, 2011,89(6):1761-1771.
[3] Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem, 2007,71(3):646-670.
[4] Vongsangnak W, Olsen P, Hansen K, et al. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics, 2008,9(1):245-258.
[5] Nguyen C H, Tsurumizu R, Sato T, et al. Taka-amylase A in the conidia of Aspergillus oryzae RIB40. Biosci. Biotechnol. Biochem, 2005,69(11):2035-2041.
[6] Liang Y, Pan L, Lin Y. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem, 2009,73(1):192-195.
[7] Gomi K, Iimura Y, Hara S. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem,1987,51(9):2549-2555.
[8] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005,438(7071):1157-1161.
[9] Cherry J M, Ball C, Weng S, et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature, 1997, 387(6632):67-73.
[10] Galagan J E, Calvo S E, Cuomo C, et al. Sequencing of Asperglllus nidulans and comparative analysis with A. fumlgatus and A. oryzae. Nature, 2005, 438(7071):1105-1115.
[11] Nierman W C, Pain A, Anderson M J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438(7071):1151-1156.
[12] Liu L, Feizi A, Osterlund T, et al. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC Systems Biology, 2014,8(1):1-13.
[13] Zhao G, Yao Y, Chen W, et al. Comparison and analysis of the genomes of two Aspergillus oryzae strains. J Agric Food Chem, 2013, 61(32):7805-7809.
[14] Zhao G, Yao Y, Hou L, et al. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042. Biotechnol Lett, 2014,36(10):2053-2058.
[15] 张田, 唐克轩. 丝状真菌的遗传工程研究进展. 上海交通大学学报(农业科学版), 2010, 28(5):481-485. Zhang T, Tang K X. Progress on genetic engineering of filamentous fungi. Journal of Shanghai Jiaotong University (Agriculturay Science), 2010, 28(5):481-485.
[16] Bundock P, Dulk R A, Beijersbergen A G M. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO, 1995, 14(3):3206-3214.
[17] de Groot M J, Bundock P, Hooykaas P J, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol, 1998,16(9):839-842.
[18] Meyer V, Wu B, Ram A F. Aspergillus as a multi-purpose cell factory:current status and perspectives. Biotechnol Lett, 2011, 33(3):469-476.
[19] 李方方, 潘力, 曾沛斌. 酱油工业生产菌沪酿3042基因工程转化体系的构建. 食品工业科技, 2009, 30(6):94-95, 99. Li F F, Pan L, Zeng P B. Construction of genic engineering transforming system of Aspergillus oryzae HuNiang 3042 used in soy sauce industry. Science and Technology of Food Industry, 2009, 30(6):94-95,99.
[20] 王金良, 陈宏文. 米曲霉pyrG基因克隆及其同源转化系统的建立. 食品科学, 2010, 31(11):202-205. Wang J L,Chen H W. PyrG gene cloning and establishment of homologous transformation system for Aspergillus oryzae. Food Science, 2010, 31(11):202-205.
[21] Minetoki T, Nunokawa Y, Gomi K, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding alpha-glucosidase. Curr. Genet, 1996,30(5):432-438.
[22] Yamada O, Lee B R, Gomi K. Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci Biotech Bioch, 1997,61(8):1367-1369.
[23] Jin F J, Maruyama J I, Juvvadi P R, et al. Adenine auxotrophic mutants of Aspergillus oryzae:development of a novel transformation system with triple auxotrophic hosts. Biosci Biotech Bioch, 2004,68(3):656-662.
[24] Yoon J, Maruyama J, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol, 2011,89(3) 747-759.
[25] Jin F J, Maruyama J, Juvvadi P R, et al. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in A. oryzae. FEMS Microbiol Lett, 2004,239(1):79-85.
[26] Maruyama J, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DligD) in Aspergillus oryzae. Biotechnol Lett, 2008,30(10):1811-1817.
[27] Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae:cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem, 2000,64(7):1416-1421.
[28] Suzuki S, Tada S, Fukuoka M, et al. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun, 2009, 383(1):42-47.
[29] 张建军, 蔡容华, 李强, 等. 提高蛋白质在米曲霉中表达量的策略. 中国生物工程杂志, 2009, 29(1):111-115. Zhang J J, Cai R H, Li Q, et al. Strategies for prompting the production of proteins in Aspergillus oryzae. China Biotechnology, 2009, 29(1):111-115.
[30] Zhao G, Hou L, Yao Y, et al. Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100-8 strains:towards the production of different soy sauce flavors. Journal of Proteomics, 2012,75(13):3914-3924.
[31] Nakajima K, Sano M, Machida M. Current progress in the analysis of transcriptional regulation in the industrially valuable microorganism Aspergillus oryzae. Biotechnol Bioprocess Eng, 2000,5(4):253-262.
[32] Murphy R A, Power R F. Expression of an α-galactosidase from Saccharomyces cerevisiae in Aspergillus awamori and Aspergillus oryzae. Journal of Industrial Microbiology & Biotechnology, 2002,28(2):97-102.
[33] Zheng X F, Kobayashi Y, Takeuchi M. Construction of a low-serine-type-carboxypeptidase-producing mutant of Aspergillus oryzae by the expression of antisense RNA and its use as a host for heterologous protein secretion. Appl Microbiol Biotechnol, 1998, 49(1):39-44.
[34] Jin F, Watanabe T, Juvvadi P, et al. Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol, 2007,76(5):1059-1068.
[35] Yoon J, Kimura S, Maruyama J, et al. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol. 2009, 82(4):691-701.
[36] Gouka R J, Punt P J, van den Hondel C A. Efficient production of secreted proteins by Aspergillus:progress, limitations and prospects. Appl Microbiol Biotechnol, 1997, 47(1):1-11.
[37] Tada S, Gomi K, Kitamoto K, et al. Construction of a fusion gene comprising Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Gen Genet, 1991,229(2):301-306.
[38] Okazaki F, Aoki J, Tabuchi S,et al. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol, 2012,96(1):81-88.
[39] Maruyama J, Ohnuma H, Yoshikawa A, et al. Production and product quality assessment of human hepatitis B virus Pre-S2 antigen in submerged and solid-state cultures of Aspergihs oryzae. J Biosci Bioeng, 2000, 98(1):118-120.
[40] Uchima C A, Tokuda G, Watanabe H, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol, 2011, 89(6):1761-1771.
[41] Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control. Appl Microbiol Biotechnol, 2001, 57(1-2):131-137.
[42] Ishida H, Hata Y, Kawato A, et al. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem, 2004, 68(9):1849-1857.
[43] Bando H, Hisada H, Ishida H, et al. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol, 2011, 92(3):561-569.
[44] Tamano K, Bruno K S, Karagiosis S A, et al. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol 2013, 97(1):269-281.
[45] Rashid M H, Javed M R, Kawaguchi T, et al. Improvement of Aspergillus oryzae for hyperproduction of endoglucanase:expression cloning of cmc-1 gene of Aspergillus aculeatus. Biotechnol Lett. 2008, 30(12):2165-2172.
[46] Yamada R, Yoshie T, Wakai S, et al. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microbial Cell Factories, 2014, 13(1):71-78.
[47] 王斌, 潘力, 郭勇. 丝状真菌米曲霉外源基因表达系统的构建. 华南理工大学学报(自然科学版), 2009, 37(6):84-90. Wang B, Pan L, Guo Y. Construction of heterologous gene expression system for filamentous Aspergillus oryzae. Journal of South China University of Technology (NaturalScienceEdition), 2009, 37(6):84-90.
[48] Brown S H, Bashkirova L, Berka R. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol, 2013, 97(20):8903-8912.
[49] Wakai S, Yoshie T, Asai-Nakashima N. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresource Technology, 2014, 173:376-383.
[50] Kitamoto N, Matsui J, Kawai Y, et al. Utilization of the TEF1-a gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol, 1998, 50(1):85-92.
[51] Minetoki T, Kumagai C, Gomi K, et al. Improvement of promoter activity by the introduction of multiple copies of the conserved region Ⅲ sequence, involved in the effcient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol, 1998, 50(4):459-467.
[52] Minetoki T, Nunokawa Y, Gomi K, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding a-glucosidase. Curr Genet, 1996, 30(5):432-438.
[53] Zhou B, Wang C, Wang B, et al. Identification of functional cis-elements required for repression of the Taka-amylase A gene under secretion stress in Aspergillus oryzae. Biotechnol Lett, 2015, 37(12):333-341.
[54] 李方方, 潘力. 米曲霉基因表达研究进展及应用. 中国酿造, 2008, 12:1-3. Li F F, Pan L. The advance of gene expression of Aspergillus oryzae and the application. China Brewing, 2008, 12:1-3.
[55] Ohno A, Maruyama J, Nemoto T, et al. A carrier fusion significantly induces unfolded protein response in heterologous protein production by Aspergillus oryzae. Appl Microbiol Biotechnol, 2011, 92(92):1197-1206.
[56] Tsuchiya K, Nagashima T, Yamamoto Y, et al. High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem, 1994, 58:895-899.
[57] Sakai K, Kinoshita H, Shimizu T, et al. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng, 2008, 106(5):466-72.
[58] Tamano K, Bruno K S, Karagiosis S A. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol, 2013, 97(1):269-281.
[59] Knuf C, Nookaew I, Remmers I. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol, 2014, 98(8):3517-3527.
[60] Fleibner A, Dersch P. Expression and export:recombinant protein productionsystems for Aspergillus. Appl Microbiol Biotechnol, 2010, 87(4):1255-1270.
[61] Wang L, Ridgwaya D, Gu T, et al. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv, 2005, 23(2):115-129.
[62] Sharma R, Katoch M, Srivastava P S, et al. Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol, 2009, 25(12):2083-2094.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[5] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[6] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[7] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[8] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[9] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[10] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[11] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[12] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[15] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.