Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (09): 125-130    DOI:
    
Research Advances in Biosynthesis of UDPG
CHEN Sheng, LI Yan, LIU Huan, YAN Ming, XU Lin
Biotechnology and Pharmaceutical Engineering of Nanjing University of Technology, Nanjing 210009, China
Download: HTML   PDF(545KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  UDPG is an important nucleotide diphosphate monosaccharide which serves as a biogenetic precursor for a range of sugars. Compared with traditional chemical synthesis of UDPG, Biosynthesis is inexpensive pollution-free and high Stereospecific. Pure enzymatic strategies involving modified Leloir one-pot enzymatic system, two-step Sucrase synthase catalysis and reversible catalysis of sugar synthetic reaction achieved a high production of UDPG. Whole cell catalysis utilized the stable endoenzymes for UDPG biosynthesis and intracellular UDPG could be directly used to synthetize the products in cells, which seemed to be viable and low cost. In this paper, the research advances of enzymatic and whole cell catalysis were reviewed.

Key wordsUDPG      Biosynthesis      Enzymatic catalysis      Whole cell catalysis     
Received: 19 March 2012      Published: 25 September 2012
ZTFLH:  Q55  
Cite this article:

CHEN Sheng, LI Yan, LIU Huan, YAN Ming, XU Lin. Research Advances in Biosynthesis of UDPG. China Biotechnology, 2012, 32(09): 125-130.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I09/125

[1] Watkins W. Glycosyltransferases, early history, development and future prospects. Carbohydrate Research, 1986, 149(1):1-12.
[2] Coutinho P M, Deleury E, Davies G J, et al. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328(2):307-317.
[3] Hancock S M, Vaughan M D, Withers S G. Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol, 2006, 10(5):509-519.
[4] Heidlas J E, Williams K W, Whitesides G M. Nucleoside phosphate sugars:syntheses on practical scales for use as reagents in the enzymatic preparation of oligosaccharides and glycoconjugates. Acc Chem Res, 1992, 25(7):307-314.
[5] Kim D D. The sulfur-containing antibiotic BE-7585A: a study of its synthesis. UTDR, 2010.
[6] Richman A, Swanson A, Humphrey T, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J, 2005, 41(1):56-67.
[7] Prescher J A, Bertozzi C R. Chemical Technologies for Probing Glycans. Cell, 2006, 126(5):851-854.
[8] Feingold D S, Barber G A. Nucleotide sugars. In: Dey P M, Harborne J B. Methods in Plant Biochemistry—Carbohydrates. 2. New York: Academic Press, 1990. 39-78.
[9] Caputto R, Leloir L F, Cardini C E, et al. Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J Bio Chem, 1950, 184(1):333-350.
[10] Wagner G K, Pesnot T, Fieid R A. A survey of chemical methods for sugar-nucleotide synthesis. Nat Prod Rep, 2009, 26(9):1172-1194.
[11] Moffatt J G, Khorana H G. Nucleoside polyphosphates VIII.1 New and improved synthesis of uridine diphosphate glucose and flavin adenine dinucleotide using nucleoside-5'-phosphoramides. J Am Chem Soc, 1958, 80(14):3756-3761.
[12] Roseman S, Distler J J, Moffatt J G, et al. Nucleoside Polyphosphates. XI.1 An Improved General Method for the Synthesis of Nucleotide Coenzymes. Syntheses of Uridine-5', Cytidine-5' and Guanosine-5' Diphosphate Derivatives. J Am Chem Soc, 1958, 80(14):3756-3761.
[13] Simon, Simon E S, Grabowski S, et al. Convenient syntheses of cytidine-5'-triphosphate (CTP), guanosine-5'-triphosphate(GTP), and uridine-5'-triphosphate(UTP) and their use in the preparation of UDP-glucose, UDP-glucuronic acid, and GDP-mannose. J Org Chem, 1990, 55(6):1834-1841.
[14] Wittmann V, Wong C H. 1H-Tetrazole as catalyst in phosphomorpholidate coupling reactions: Efficient synthesis of GDP-fucose, GDP-mannose, and UDP-galactose. J Org Chem, 1997, 62(7):2144-2147.
[15] Campbell R E, Tanner M E. UDP-glucose analogues as inhibitors and mechanistic probes of UDP-glucose dehydrogenase. J Org Chem, 1999, 64(26):9487-9492.
[16] Schäfer A, Thiem J. Synthesis of novel donor mimetics of UDP-Gal, UDP-GlcNAc and UDP-GalNAc as potential transferaseinhibitors. J Org Chem, 2000, 65(1):24-29.
[17] Arlt M, Hindsgaul O. Rapid chemical synthesis of sugar nucleotides in a form suitable for enzymatic oligosaccharide synthesis. J Org Chem, 1995, 60(1):14-15.
[18] Hanessian S, Lu P P, Ishida H. One-step, stereocontrolled synthesis of glycosyl-1-phosphates, uridine-5’-diphosphogalactos, and uridine-5’-diphosphoglucose from unprotected glycosyl donors. J Am Chem Soc, 1998, 120(51):13296-13300.
[19] Timmons S C, Jakeman D L. Jakeman. Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides. Carbohydrate Research, 2008, 343(5):865-874.
[20] Timmons S C, Jakeman D L. Stereoselective synthesis of sugar nucleotides using neighboring group participation. Current Protocols in Nucleic Acid Chemistry, 2007, 31(13.7):1-16.
[21] Wolf S, Zismann T, Lunau N, et al. A convenient synthesis of nucleoside diphosphate glycopyranoses and other polyphosphorylated bioconjugates. European Journal of Cell Biology, 2010, 89(1):63-75.
[22] Anderson E P, Elizabeth S M, Robert M B. Enzymatic syntheses of 14C-labeled uridine diphosphoglucose, galactose 1-Phosphate, and uridine diphosphogalactose. J Am Chem Soc, 1959, 81(24):6514-6517.
[23] Ma X Y, Stöckigt J. High yielding one-pot enzyme-catalyzed synthesis of UDP-glucose in gram scales. Carbohydrate Research, 2001, 333(2):159-163.
[24] Bae J, Kim K H, Kim D, et al. A practical enzymatic synthesis of UDP sugars and NDP glucoses. Chem Bio Chem, 2005, 6(11):1963-1966.
[25] Muthana M M, Qu J, Li Y, et al. Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun, 2012, 48(21):2728-2730.
[26] Zervosen A, Stein A, Adrian H, et al. Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates. Tetrahedron, 1996, 52(7):2395-2404.
[27] Römer U, Schrader H, Günther N. Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. Journal of Biotechnology, 2004, 107(2):135-149.
[28] Ryu S I, Kim J E, Kim E J, et al. Catalytic reversibility of Pyrococcus horikoshii trehalose synthase: Efficient synthesis of several nucleoside diphosphate glucoses with enzyme recycling. Process Biochemistry, 2011, 46(1):128-134.
[29] Ryu S I, Park C S, Cha J, et al. A novel trehalose synthasefrom Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun, 2005, 329(2):429-436.
[30] Kim H M, Chang Y K, Ryu S I, et al. Enzymatic synthesis of a galactose containing trehalose analogue disaccharide by Pyrococcus horikoshii trehalose-synthesizing glycosyltransferase: Inhibitory effects on several disaccharidase activities. J Mol Catal B: Enzym, 2007, 49(1-4):98-103.
[31] Koeller K M, Wong C H. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev, 2000, 100(12):4465-4494.
[32] Qu Q, Lee S J, Boos W. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem, 2004, 279(46):47890-47897.
[33] Dong Q, Ouyang L M, Yu H L, et al. Efficient biosynthesis of uridine diphosphate glucose from maltodextrin by multiple enzymes immobilized on magnetic nanoparticles. Carbohyd Res, 2010, 345:1622-1626.
[34] Mao Z, Shin H D, Chen R R. Engineering the E. coli UDP-glucose synthesis pathway for oligosaccharide synthesis. Biotechnol Prog, 2006, 22(2):369-374.
[35] Oh J S. Disaccharide Synthesis using E.coliUDP-glucose regeneration system. Korean Journal of Biotechnology and Bioengineering, 2008, 23(6):474-478.
[36] Jesús R D, María J Y. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylasein Lactobacillus casei. Journal of Biotechnology, 2011, 154(4): 212-215.
[37] Ruffing A, Chen R R. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microbial Cell Factories, 2006, 5(1):25.
[38] Yan Y, Li Z, Mattheos A G K. High-Yield Anthocyanin Biosynthesis in Engineered Escherichia coli. Biotechnology and Bioengineering, 2008, 100(1):126-140.
[39] Bosco M B, Machtey M, Iglesias A A, et al. UDPglucose pyrophosphorylase from Xanthomonas spp. Characterization of the enzyme kinetics, structure and inactivation related to oligomeric dissociation. Biochimie, 2009, 91(2):204-213.
[40] Moyrand F, Lafontaine I, Fontaine T, et al. UGE1 and UGE2 Regulate the UDP-Glucose/UDP-Galactose Equilibrium in Cryptococcus neoformans. Eukaryotic Cell, 2008, 7(12): 2069-2077.
[41] Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J, 2006, 273(12):2645-2657.
[42] Boels I C, Kleerebezem M, de Vos W M. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol. 2003, 69(2):1129-1135.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[6] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[9] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[10] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[11] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[12] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[13] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[14] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[15] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.