Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (3): 99-103    DOI: 10.13523/j.cb.20150314
    
Strategy of Metabolic Engineering Microorganism for High Yield Amino Acids
WAN Fang1, CHEN Min-liang2, ZHANG Bin1, CHEN Jin-cong2, CHEN Xue-lan1
1. College of Life Science, JiangXi Normal University, Nanchang 330022, China;
2. Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
Download: HTML   PDF(374KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Amino acids, which play the irreplaceable role in maintaining the body's normal physiology as a kind of nutrient substances, are usually used as additives in food, pharmaceuticals, and cosmetics. Production of amino acids mainly relies on microbial fermentation. However, high yield amino acid strain by selection hinders the large-scale industrial production. Application of metabolic engineering has become a hot spot of research in microbial metabolism network and genetically modification for screening high yield amino acid strain with the development of metabolic engineering strategy and technology in molecular breeding. The characteristic of C. glutamicum metabolism network and metabolic engineering strategy in molecular breeding of C. glutamicum-producing amino acids are introduced.



Key wordsMetabolic engineering      C. glutamicum      Molecular breeding      Amino acid     
Received: 13 November 2014      Published: 25 March 2015
ZTFLH:  Q812  
Cite this article:

WAN Fang, CHEN Min-liang, ZHANG Bin, CHEN Jin-cong, CHEN Xue-lan. Strategy of Metabolic Engineering Microorganism for High Yield Amino Acids. China Biotechnology, 2015, 35(3): 99-103.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150314     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I3/99


[1] Leuchtenberger W, Huthmacher K, Drauz K, et al. Biotechnological production of amino acids and derivatives : current status and prospects.Appl Microbiol Biotechnol, 2005, 69(1): 1-8.

[2] 陈琦, 王卓, 魏冬青. 代谢网络流分析进展及应用. 科学通报, 2010,55(14): 1302-1309. Chen Q, Wang Z, Wei D Q. Progress in the applications of flux analysis of metabolic networks. Chinese Sci Bull, 2010,14(55):1302-1309.

[3] Xu J, Han M, Zhang J, et al. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids, 2014, 46: 2165-2175.

[4] Schneider J, Karin N, Volker F W. Production of the amino acidsL-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum.Journal of Biotechnology, 2011,154: 191-198.

[5] Xu M, Rao Z, Dou W. Site-directed mutagenesis studies on the L-Arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum.Curr Microbiol, 2012,64: 164-172.

[6] Seo Y K, Lee J, Lee S Y. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnology and Bioengineering,2015,112(2):416-421.

[7] Bommareddy A R, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering, 2014,25: 30-37.

[8] Jiang L Y, Zhang Y Y, Li Z, et al. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Journal of Industrial Microbiology and Biotechnology, 2013,10(40): 1143-1151.

[9] Park S H, Kim H U, Kim T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications,2014, doi:10.1038/ncomms5618.

[10] Yin L, Shi F, Hu X, et al.Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. Journal of Applied Microbiology, 2012,5(114): 1369-1377.

[11] 刘立明, 陈坚. 基因组规模代谢网络模型构建及其应用. 生物工程学报, 2010, 26(9): 1176-1186. Liu L M, Chen J. Reconstruction and application of genome-scale metabolic network model. Chin J Biotech, 2010, 26(9): 1176-1186.

[12] Kjeldsen K R, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnology and Bioengineering, 2009,102(2): 583-697.

[13] Shinfuku Y, Sorpitiporn N,Sono M, et al. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories, 2009,43(8): 1-15.

[14] 焦炳华. 现代生命科学概论. 2009, 北京: 科学出版社. Jiao B H. Introduction to Modern Life Science. Beijing: Science Press,2009.

[15] Hashimoto K, Nakamura K, Kuroda T, et al. The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Bioscience, Biotechnology, and Biochemistry, 2010,74(12): 2546-2549.

[16] Yen M R, Tseng Y H, Simic P, et al. The ubiquitous ThrE family of putative transmembrane amino acid efflux transporters. Research in Microbiology, 2002,153(1): 19-25.

[17] Seryoung K, Yoneyama H. Amino acid exporter: a tool for the next-generation microbial fermentation. J Biotechnol Biomater, 2013, 3: 118-122.

[18] Zhou Z H, Wang C, Chen G J, et al. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Applied Cellular Physiology and Metabolic Engineering,2015, 31(1):12-19.

[19] Zahoor A, Ottenb A, Wendisch V F, et al. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J.Biotechnol,2014, doi:10.1016/ j.jbiotec.

[20] Xu M J, Rao Z M, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of L-arginine production. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 495-502.

[21] Cremer J, Eggeling L, Sahm H. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Applied and Environmental Microbiology, 1991, 57(6): 1746-1752.

[22] Becker J, Zelder, Häfner, et al. From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.Metabolic Engineering, 2011, 13(2): 159-168.

[23] Huang H, Zhou P, Xie J. Molecular mechanisms underlying the function diversity of transcriptional factor IclR family. Cellular Signalling, 2012, 24(6): 1270-1275.

[24] Michael Bott. Offering surprises:TCA cycle regulation in Corynebacterium glutamicum. Trends in Microbiology, 2007, 15(9): 417-422.

[25] Brune I, Jochmann N, Brinkrolf K, et al.TheIclR-type transcriptional repressor LtbRregulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.Journal of Bacteriology , 2007, 189(7): 2720–2733.

[26] Axel N, Armin K, Christian S, et al.Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. The Journal of Biological Chemistry, 2006, 281(18):12300-12307.

[27] Christian S, Axel N, Lena G, et al. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol, 2007,76(3): 691-700.

[28] Lu D M, Liu J Z , Mao Z W, et al. Engineering of Corynebacterium glutamicum to enhance L-ornithine production by gene knockout and comparative proteomic analysis. Biotechnology and Bioengineering, 2012, 20(4): 731-739.

[29] Yao W, Deng X, Zhong H, et al. Double deletion of dtsR1 and pyc induce efficient L-glutamate overproduction in Corynebacterium glutamicum. J Ind Microbiol Biotechnol, 2009, 36(7): 911-921.

[30] Simic P, Willuhn J, Sahm H, et al. Identification of glyA(encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-Threonine accumulation by Corynebacterium glutamicum. Applied and Environmental Microbiology, 2002, 68(7): 3321-3327.

[31] Xu M J, Rao Z M, Yang J, et al. The effect of a LYSE exporter overexpression on L-Arginine production in Corynebacterium crenatum. Curr Microbiol, 2013, 67(3): 271-278.

[32] Shi F, Li K, Huan X, et al. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicumssp.lactofermentum. Appl Biochem Biotechnol, 2013, 171(2): 504-521.

[33] 李桂莹, 张新波, 王智文, 等. 逆向代谢工程的最新研究进展. 生物工程学报, 2014, 30(8): 1151-1163. Li G Y, Zhang X B, Wang Z W, et al. Progress in inverse metabolic engineering. Chin J Biotech, 2014, 30(8): 1151-1163.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[5] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[6] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[7] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[8] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[9] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[10] Er-shu XUE,Qian-qian SONG,Kai-ren TIAN,Jian-jun QIAO,Cai-yin QINGGELE. Research Progress in the Biosynthesis and Regulation of D-amino Acids in Bacterial[J]. China Biotechnology, 2019, 39(4): 106-113.
[11] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[12] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[13] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[14] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[15] ZHAO Shuang, LIU Liu, WU Lin-huan, MA Jun-cai. Research and Development Trend of the Technology on Corynebacterium glutamicum[J]. China Biotechnology, 2016, 36(9): 101-109.