Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (11): 79-82    DOI:
    
MicroRNA Involved in p53 Regulatory Network
GUO Zhi-yun, MAO Can-quan, XIONG Li-li
Center of Bioinformatics, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML   PDF(385KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a key pathogenic factor in tumorigenesis, p53 had been researched widely. MicroRNA involved in the cancer disease also become a undisputed factor, but the relationship between p53 and microRNA regulation was unclear.Recent studies that shed light on p53 and miRNA possible regulation model and the action of p53 in miRNA function and synthesis were discussed. Finally, the schematic illustration of putative p53-microRNA regulatory pathway also was presented and discussed.



Key wordsp53      miRNA      Pathway     
Received: 16 July 2010      Published: 19 November 2010
ZTFLH:  Q752  
Cite this article:

GUO Zhi-yun, MAO Can-quan, XIONG Li-li. MicroRNA Involved in p53 Regulatory Network. China Biotechnology, 2010, 30(11): 79-82.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I11/79

[1] Brown C J, Lain S, Verma C S, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer, 2009, 9(12):862-873.
[2] Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell,2009, 136(2):215-233.
[3] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-854.
[4] Zhu W, Shan X, Wang T, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer,2010, .
[5] Barbarotto E, Schmittgen T D, Calin G A. MicroRNAs and cancer: profile, profile, profile. Int J Cancer,2008, 122(5):969-977.
[6] Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle,2007, 6(13):1586-1593.
[7] He X, He L, Hannon G J. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res,2007, 67(23):11099-11101.
[8] He L, He X, Lim L P, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447(7148): 1130-1134.
[9] Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell,2007, 26(5):731-743.
[10] Song B,Wang Y,Kudo K,et al. miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit.Clin.Cancer Res,2008, 14(24):8080-8086.
[11] Georges S A, Biery M C, Kim S Y, et al. Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res,2008, 68(24):10105-10112.
[12] Park S Y, Lee J H, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol,2009, 16(1):23-29.
[13] Le M T, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev,2009, 23(7):862-876.
[14] Zhang Y, Gao J S, Tang X, et al. MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett,2009, 583(22):3725-3730.
[15] Tian S, Huang S, Wu S, et al. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3' untranslated region. Biochem Biophys Res Commun. 2010, 396(2):435-439.
[16] Hu W, Chan C S, Wu R, et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell,2010, 38(5):689-699.
[17] Mraz M, Pospisilova S, Malinova K, et al. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma,2009, 50(3):506-509.
[18] Cui Q, Yu Z, Pan Y, et al. MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun,2007, 352(3): 733-738.
[19] Shalgi R, Lieber D, Oren M, et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol,2007, 3(7): e131.
[20] Guo A Y, Sun J, Jia P, et al. A Novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol,2010, 4(1):10.
[21] Ragimov N, Krauskopf A, Navot N, et al. Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene,1993, 8(5):1183-1193..
[22] Ho J S, Ma W, Mao D Y, et al. Benchimol S. p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol,2005, 25(17):7423-7431.
[23] Sachdeva M,Zhu S,Wu F,et al.p53 represses c-Myc through induction of the tumor suppressor miR-145.Proc Natl Acad Sci VSA,2009,106(9):3207-3212.
[24] Yamakuchi M, Lowenstein C J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle,2009, 8(5):712-715.
[25] Brosh R, Shalgi R, Liran A, et al. p53-Repressed miRNAs are involved with E2F in a feed-forward loo Ppromoting proliferation. Mol Syst Biol,2008, 4:229.
[26] Suzuki H I, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature,2009, 460(7254):529-533.
[27] Kota J, Chivukula R R, O'Donnell K A, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell,2009, 137(6):1005-1017.

[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[3] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[4] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[5] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[6] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[7] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[8] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[9] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[10] WANG Tian-zhu,WU Qing,ZHANG Ning,WANG Dong-jie,XU Zhou,LUO Wei,DU Zong-jun. Advances in Research on Melanin Synthesis and Signaling Pathway in Fish[J]. China Biotechnology, 2020, 40(5): 84-93.
[11] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[12] CHEN Bao-feng,LI Zhi-gang,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Production by Coupling Addition of Low-Polyphosphate and Hypoxanthine[J]. China Biotechnology, 2019, 39(8): 25-31.
[13] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[14] Yu-han CHENG,Xi GONG,Yu-ping LUO. Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1)[J]. China Biotechnology, 2019, 39(5): 105-113.
[15] Lu CHEN,Mao HUANG,Qi PENG,Jia-li ZHAO,Jia-qing XIE,Lu LIN,Li-jun HU,Yi-yun HUANG,Qin HU,Lan ZHOU. S100A6 Promotes Cell Proliferation of Colorectal Cancer via Upregulating IL-6 Expression of Macrophages[J]. China Biotechnology, 2019, 39(4): 1-7.