Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (5): 84-93    DOI: 10.13523/j.cb.1912020
    
Advances in Research on Melanin Synthesis and Signaling Pathway in Fish
WANG Tian-zhu,WU Qing,ZHANG Ning,WANG Dong-jie,XU Zhou,LUO Wei,DU Zong-jun()
College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
Download: HTML   PDF(891KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Fish has been used as an important model for melanoma research. In recent years, great progress has been made in the study of fish melanin due to its melanoma model with uniform pathological characteristics and ease of reproduction. Melanocytes are the most important pigment cells in fish. The eumelanin has an important effect on the surface coloring and life activities of fish. The synthesis process mainly involves the catalytic action of the tyrosine gene family. Pheomelanin was previously thought to be non-existent in fish, but recent research has yielded different insights. With the extensive study of fish melanin synthesis, its synthetic regulation mechanism has also been studied in depth. In the signal pathway that regulates melanin synthesis, microphthalmia-associated transcription factor (Mitf) is a key regulator of various signaling pathways, which is affected by upstream α-Msh/Mc1r, Wnt/β-Catenin, and Scf/c-Kit and other signaling pathways mediate the downstream tyrosine gene family and regulate the synthesis of melanin. The synthesis of fish melanin and related signaling pathways be reviewed, with a view to providing a reference for the basic theory of fish melanin synthesis and aquaculture, and also to help understand the origin and regulation of human melanin synthesis, and to overcome melanoma.



Key wordsFish      Melanin synthesis      Signal pathway      Mitf     
Received: 08 December 2019      Published: 02 June 2020
ZTFLH:  Q75  
Corresponding Authors: Zong-jun DU     E-mail: 756662181@qq.com
Cite this article:

WANG Tian-zhu,WU Qing,ZHANG Ning,WANG Dong-jie,XU Zhou,LUO Wei,DU Zong-jun. Advances in Research on Melanin Synthesis and Signaling Pathway in Fish. China Biotechnology, 2020, 40(5): 84-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1912020     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I5/84

Fig.1 The pathway of melanin synthesis in fish
年份 作者 结论或观点 文献参考
1993 Fujii R 鱼类不能合成褐黑色素 [21]
2003 Ito et al [23]
2004 Grether et al [22]
2009 Aspengren et al [26]
1999 Hirose et al 鉴定褐黑色素标记物4-AHP的含量极少,可忽略不计,不足以证明鱼类存在褐黑色素
2005 Adachi et al [27]
2010 Adachi et al [28]
2015 Kottler et al 鱼类褐黑色素的存在需要实际的化学鉴定 [25]
2014 Xu et al 分子生物学针对褐黑色素合成途径的xCT(slc7a11)、Asip及 Cbs等研究表明鱼类可能存在褐黑色素 [24]
2014 Jiang et al [29]
2014 Wang et al [30]
2016 Zhu et al [31]
2018 Luo et al [32]
2018 Wang et al [33]
2019 Wang et al [34]
2018 Wang et al 饲料添加Cys及Tyr实验揭示褐黑色素可能在鱼类中合成 [35]
2016 Kumar et al 组织学及图像技术研究在鱼类中观察到褐黑色素,但还需更多的证据证实 [36]
2019 Dang et al [37]
2020 Stocker et al [38]
Table1 Some researches on fish pheomelanin
Fig.2 Fish melanin synthesis signaling pathway
Fig.3 The formation and regulation model of eumelanin and pheomelanin of fish
[1]   Cal L, Suarez-bregua P, Cerdá-reverter J M , et al. Fish pigmentation and the melanocortin system. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 2017,211:26-33.
[2]   Hearing V J . The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Research, 2000,13(s8):23-34.
[3]   Ceinos R M, Guillot R, Kelsh R N , et al. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell & Melanoma Research, 2015,28(2):196-209.
[4]   Van der Salm A L, Metz J R, Bonga S E W , et al. α-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 2005,144(2):140-149.
[5]   Sugimoto M, Yuki M, Miyakoshi T , et al. The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish, Danio rerio. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 2005,303(6):430-440.
[6]   Braasch I, Volff J N, Schartl M . The evolution of teleost pigmentation and the fish-specific genome duplication. Journal of Fish Biology, 2008,73(8):1891-1918.
[7]   Hubbard J K, Uy J A C, Hauber M E , et al. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics, 2010,26(5):231-239.
[8]   Wedekind C, Jacob A, Evanno G , et al. Viability of brown trout embryos positively linked to melanin-based but negatively to carotenoid-based colours of their fathers. Proceedings of the Royal Society B Biological Sciences, 2008,275(1644):1737-1744.
[9]   赵宁宁, 周邦维, 李勇 , 等. 环境光色对工业化养殖豹纹鳃棘鲈幼鱼生长、肤色及生理指标的影响. 中国水产科学, 2016,23(4):976-984.
[9]   Zhao N N, Zhou B W, Li Y , et al. Effects of light color on growth, skin color, and physiological indices of juvenile Plectropomus leopardus in a recirculating aquaculture system. Journal of Fishery Sciences of China , 2016,23(4):976-984.
[10]   Patton E E, Mitchell D L, Nairn R S . Genetic and environmental melanoma models in fish. Pigment Cell & Melanoma Research, 2010,23(3):314-337.
[11]   Ceol C J, Houvras Y, White R M , et al. Melanoma biology and the promise of zebrafish. Zebrafish, 2008,5(4):247-255.
[12]   Delfgaauw J, Duschl J, Wellbrock C , et al. MITF-M plays an essential role in transcriptional activation and signal transduction in Xiphophorus melanoma. Gene, 2003,320(1):117-126.
[13]   Schartl M, Kneitz S, Wilde B , et al. Conserved expression signatures between medaka and human pigment cell tumors. PLoS One, 2012,7(5):e37880.
[14]   Sugiyama A, Schartl M, Naruse K . Histopathologic features of melanocytic tumors in Xiphophorus melanoma receptor kinase (xmrk)-transgenic medaka (Oryzias latipes). Journal of Toxicologic Pathology, 2019,32(2):111-117.
[15]   Galván I, Solano F . Bird integumentary melanins: biosynthesis, forms, function and evolution. International Journal of Molecular Sciences, 2016,17(4):520.
[16]   Braasch I, Schartl M, Volff J N . Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evolutionary Biology, 2007,7(1):74.
[17]   Hoekstra H E . Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 2006,97(3):222-234.
[18]   Kelsh R N . Genetics and evolution of pigment patterns in fish. Pigment Cell Research, 2004,17(4):326-336.
[19]   Parichy D M, Johnson S L . Zebrafish hybrids suggest genetic mechanisms for pigment pattern diversification in Danio. Development Genes and Evolution, 2001,211(7):319-328.
[20]   Lin J Y, Fisher D E . Melanocyte biology and skin pigmentation. Nature, 2007,445(7130):843-850.
[21]   Fujii R . Cytophysiology of fish chromatophores. International Review of Cytology, 1993,143:191-255.
[22]   Grether G F, Kolluru G R, Nersssian K . Individual colour patches as multicomponent signals. Biological Reviews, 2004,79(3):583-610.
[23]   Ito S, Wakamatsu K . Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res, 2003,16(5):523-531.
doi: 10.1034/j.1600-0749.2003.00072.x
[24]   Xu P, Zhang X F, Wang X M , et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nature Genetics, 2014,46(11):1212-1219.
doi: 10.1038/ng.3098
[25]   Kottler V A, Künter A, Schartl M . Pheomelanin in fish. Pigment Cell & Melanoma Research, 2015,28(3):355-356.
[26]   Aspengren S, Sk?ld H, Wallin M . Different strategies for color change. Cellular and Molecular Life Sciences, 2009,66(2):187-191.
[27]   Adachi K, Kato K, Wakamatsu K , et al. The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in ‘suntanned'fish. Pigment Cell Research, 2005,18(6):465-468.
[28]   Adachi K, Wakamatsu K, Ito S , et al. A close relationship between androgen levels and eumelanogenesis in the teleost red seabream (Pagrus major): Quantitative analysis of its seasonal variation and effects of oral treatment with methyl-testosterone. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010,156(2):184-189.
[29]   Jiang Y L, Zhang S H, Xu J , et al. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp. PLoS One, 2014,9(9):e108200.
[30]   Wang C H, Wachholtz M, Wang J , et al. Analysis of the skin transcriptome in two oujiang color varieties of common carp. PLoS One, 2014,9(3):e90074.
[31]   Zhu W B, Wang L M, Dong Z J , et al. Erratum:comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia. Scientific Reports, 2018,8:46979.
[32]   Luo M K, Wang L M, Zhu W B , et al. Identification and characterization of skin color microRNAs in Koi carp (Cyprinus carpio L.) by illumina sequencing. BMC Genomics, 2018,19(1):779.
[33]   Wang L M, Zhu W B, Dong Z J , et al. Comparative microRNA-seq analysis depicts candidate miRNAs involved in skin color differentiation in red tilapia. International Journal of Molecular Sciences, 2018,19(4):1209.
doi: 10.3390/ijms19041209
[34]   Wang L M, Bu H Y, Song F B , et al. Characterization and functional analysis of slc7a11 gene, involved in skin color differentiation in the red tilapia. Comparative Biochemistry and Physiology Part A : Molecular and Integrative Physiology, 2019,236:110529.
[35]   Wang L M, Zhu W B, Yang J , et al. Effects of dietary cystine and tyrosine on melanogenesis pathways involved in skin color differentiation of Malaysian red tilapia. Aquaculture, 2018,490:149-155.
[36]   Kumar R, Joy K, Singh S . Morpho-histology of head kidney of female catfish Heteropneustes fossilis: seasonal variations in melano-macrophage centers, melanin contents and effects of lipopolysaccharide and dexamethasone on melanins. Fish Physiology and Biochemistry, 2016,42(5):1287-1306.
[37]   Dang M, Nowell C, Nguyen T , et al. Characterisation and 3D structure of melanomacrophage centers in shorthorn sculpins (Myoxocephalus scorpius). Tissue and Cell, 2019,57:34-41.
[38]   Stocker C W, Haddy J, Lyle J , et al. Muscle melanisation of southern sand flathead (Platycephalus bassensis) in the Tamar Estuary, Tasmania, Australia. Environmental Pollution, 2020,256:113452.
[39]   Megía-palma R, Jorge A, Reguera S . Raman spectroscopy reveals the presence of both eumelanin and pheomelanin in the skin of lacertids. Journal of Herpetology, 2018,52(1):67-73.
[40]   Roulin A, Mafli A, Wakamatu K . Reptiles produce pheomelanin: evidence in the eastern Hermann's tortoise (Eurotestudo boettgeri). Journal of Herpetology, 2013,47(2):258-261.
[41]   Wolnicka-glubisz A, Pecio A, Podkowa D , et al. Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae). Experimental Dermatology, 2012,21(7):537-540.
doi: 10.1111/exd.2012.21.issue-7
[42]   Levy C, Khaled M, Fisher D E . MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 2006,12(9):406-414.
[43]   Li M Y, Zhu F, Hong Y H . Differential evolution of duplicated medakafish mitf genes. International Journal of Biological Sciences, 2013,9(5):496-508.
[44]   Rodrigues A R, Almeida H, Gouveia A M . Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cellular Molecular Life Sciences Cmls, 2015,72(7):1331-1345.
[45]   Hsiao J J, Fisher D E . The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Archives of Biochemistry & Biophysics, 2014,563(14):28-34.
[46]   Elworthy S, Liter J A, Carney T J , et al. Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development, 2003,130(12):2809-2818.
[47]   Pierrat M J, Marsaud V, Mauviel A , et al. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. Journal of Biological Chemistry, 2012,287(22):17996-18004.
[48]   Zhang Y Q, Liu J H, Fu W , et al. Comparative transcriptome and DNA methylation analyses of the molecular mechanisms underlying skin color variations in Crucian carp ( Carassius carassius L.). Bmc Genetics, 2017,18(1):95.
[49]   李康乐 . 瓯江彩鲤体色相关基因Sox10AgoutiTyrp1Dct的分子克隆与表达分析. 上海:上海海洋大学, 2014.
[49]   Li K L . Molecular cloning and expression analysis of pigmentation-related genes, Sox10, Agouti, Tyrp1 and Dct, in Oujiang color common carp,Cyprinus carpio var. color. Shanghai: Shanghai Ocean University, 2014.
[50]   Kobayashi T, Vieira W D, Potterf B , et al. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. Journal of Cell Science, 1995,108(6):2301-2309.
[51]   Millar S E, Miller M W, Stevens M E , et al. Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated. Development, 1995,121(10):3223-3232.
[52]   Miller M W, Duhl D M, Vrieling H , et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes & Development, 1993,7(3):454-467.
[53]   Ceinos R M, Guillot R, Kelsh R N , et al. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell & Melanoma Research, 2015,28(2):196-209.
[54]   Guillot R, Ceinos R M, Cal R , et al. Transient ectopic overexpression of agouti-signalling protein 1 (asip1) induces pigment anomalies in flatfish. PLoS One, 2012,7(12):e48526.
[55]   Cerda-reverter J M, Haitina T, Schioth H B , et al. Gene structure of the goldfish agouti-signaling protein: a putative role in the dorsal-ventral pigment pattern of fish. Endocrinology, 2005,146(3):1597-1610.
[56]   Fujimura N, Taketo M M, Mori M , et al. Spatial and temporal regulation of Wnt/β-catenin signaling is essential for development of the retinal pigment epithelium. Developmental Biology, 2009,334(1):31-45.
[57]   Alexander S, Katja B, Gunnarsson G J , et al. The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Molecular Cellular Biology, 2006,26(23):8914-8927.
doi: 10.1128/MCB.02299-05
[58]   Vance K W, Goding C R . The transcription network regulating melanocyte development and melanoma. Pigment Cell Res, 2010,17(4):318-325.
[59]   Wang X P, Liu Y L, Chen H S , et al. LEF-1 regulatestyrosinase gene transcriptionin vitro. PLoS One, 2015,10(11):e0143142.
[60]   Wang X P, Liu Y L, Mei L Y , et al. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations. Journal of Human Genetics, 2018,63(5):639-646.
[61]   Dorsky R I, Moon R T, Raible D W . Control of neural crest cell fate by the Wnt signalling pathway. Nature, 1998,396(6709):370-373.
doi: 10.1038/24620
[62]   Lennartsson J, R?nnstrand L . Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiological Reviews, 2012,92(4):1619-1649.
doi: 10.1152/physrev.00046.2011
[63]   Wu M, Hemesath T J, Takemoto C M , et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes & Development, 2000,14(3):301-312.
[64]   Lee A Y, Noh M . The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents. Archives of Pharmacal Research, 2013,36(7):792-801.
[65]   Marquette A, Bagot M, Bensussan A , et al. Recent discoveries in the genetics of melanoma and their therapeutic implications. Archivum Immunologiae et Therapiae Experimentalis, 2007,55(6):363-372.
doi: 10.1007/s00005-007-0043-5
[66]   Sauka-spengler T, Meulemas D, Jones M , et al. Ancient evolutionary origin of the neural crest gene regulatory network. Developmental Cell, 2007,13(3):405-420.
doi: 10.1016/j.devcel.2007.08.005
[67]   Minchin J E, Hughes S M . Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest. Developmental Biology, 2008,317(2):508-522.
[68]   Tudrej K B, Czepielewska E, Kozlowska-Wojciechowska M . SOX10-MITF pathway activity in melanoma cells. Archives of Medical Science, 2017,13(6):1493-1503.
[69]   Dutton K A, Pauliny A, Lopes S S , et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development, 2001,128(21):4113-4125.
[70]   Cooper C D, Linbo T H, Raible D W . Kit and foxd3 genetically interact to regulate melanophore survival in zebrafish. Developmental Dynamics, 2009,238(4):875-886.
[71]   Montero-balaguer M, Lang M R, Sachdev S W , et al. The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish. Developmental Dynamics, 2010,235(12):3199-3212.
[72]   Stewart R A, Arduini B L, Berghmans S , et al. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Developmental Biology, 2006,292(1):174-188.
doi: 10.1016/j.ydbio.2005.12.035
[73]   Curran K, Raible D W, Lister J A . Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Developmental Biology, 2009,332(2):408-417.
doi: 10.1016/j.ydbio.2009.06.010
[74]   Curran K, Lister J A, Kunkel G R , et al. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Developmental Biology, 2010,344(1):107-118.
[75]   B?hm M, Hill H Z, Ultraviolet B . melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone. F1000Research, 2016,5:881.
[76]   Wolnicka-Glubisz A, Pecio A, Podkowa D , et al. HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis. PLoS One, 2013,8(11):e74883.
[77]   Takayama H, La Rochlle W J, Anver M , et al. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc Natl Acad Sci USA, 1996,93(12):5866-5871.
[78]   Maranduca M A, Branisteanu D, Serban D N , et al. Synthesis and physiological implications of melanic pigments. Oncology Letters, 2019,17(5):4183-4187.
[1] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[2] Yu-han CHENG,Xi GONG,Yu-ping LUO. Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1)[J]. China Biotechnology, 2019, 39(5): 105-113.
[3] Jun-bao JIN,Yu-rong ZHENG,Guang-zu BAI,Xin-nian WU,Jian-sheng QU. The Cellulose Pretreatment Technology Maturity Based on Fisher-Pry Model[J]. China Biotechnology, 2018, 38(6): 103-108.
[4] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[5] JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping. Development of Neurogenesis in the Adult Mammalian[J]. China Biotechnology, 2017, 37(5): 107-112.
[6] CHEN Li, CAO Ying. Effects and Possible Mechanisms of PKA on the Development of Zebrafish Pronephron[J]. China Biotechnology, 2014, 34(10): 41-48.
[7] SHEN Xin, MA Yi-tong, YANG Yi-ning, LIU Fen, YU Zi-Xiang, CHEN Bang-dang, CHEN You. Cardiac Transfection of AAV9-FrzA Gene Intervene Wnt Signal Pathway in Ischemic Heart Failure Mice[J]. China Biotechnology, 2013, 33(7): 13-17.
[8] MA Wei-feng, YANG Fei-hua, ZHAO Hai-shan, DU Jun, CAI Shao-hui. Toxicity Evaluation of a FAPα-activated Targeting Anticancer Prodrug Z-GP-Dox in Zebrafish[J]. China Biotechnology, 2012, 32(07): 37-42.
[9] LI Rong-feng, YU Hua-hua, XING Rong-e, LIU Song, LI Peng-cheng. Isolation and Identification of Heat Shock Protein 60(Hsp60) from the Nematocyst of Jellyfish Cyanea nozakii Kishinouye[J]. China Biotechnology, 2011, 31(10): 35-38.
[10] qiu shenghong. The Application of Zebrafish in the Study of the Tumor Antiangiogenesis[J]. China Biotechnology, 2009, 29(10): 98-101.
[11] . Differentiation of fish gelatin from bovine/porcine gelatin by tandem mass spectrometry[J]. China Biotechnology, 2009, 29(06): 101-107.
[12] ZHANG Ling Shu-lin HUANG. Comparative proteome analysis of goldfish (Carassius auratus) gynogenetic haploid embryos during developmental Process[J]. China Biotechnology, 2008, 28(8): 78-83.
[13] WU Yuan-Tao Hui-li SUN. Research Progress in Utilizing Marine Shellfish Proteins by Enzymatic Hydrolysis[J]. China Biotechnology, 2007, 27(9): 120-125.
[14] . The Influence of Peptidoglycan of Lactobacillus on immune function of Mouse[J]. China Biotechnology, 2006, 26(08): 98-102.