Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (5): 24-36    DOI: 10.13523/j.cb.2210029
研究报告     
谷氨酸脱羧酶的分子改造及酶学性质研究*
周丽亚1,牛玉杰1,郑晓冰1,姜艳军1,**(),马丽1,白敬2,贺莹1,**()
1 河北工业大学化工学院 天津 300130
2 河北科技大学食品与生物学院 石家庄 050018
Molecular Modification and Enzymatic Properties of Glutamate Decarboxylase
ZHOU Li-ya1,NIU Yu-jie1,ZHENG Xiao-bing1,JIANG Yan-jun1,**(),MA Li1,BAI Jing2,HE Ying1,**()
1 School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
2 College of Food Science and Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China
 全文: PDF(2743 KB)   HTML
摘要:

以大肠杆菌(Escherichia coli)来源的谷氨酸脱羧酶(GadB)为研究对象,通过组合突变,获得了pH适用范围拓宽、催化活力提高和稳定性增强的组合突变体M2。与野生型GadB-WT相比,组合突变体M2的pH适用范围有效拓宽,在pH6.0时催化活力比GadB-WT提高113.43%。之后对含有M2突变体基因重组菌的发酵培养基和诱导条件进行优化,优化后单位培养基酶活力比未优化时提高了104.13%。在此基础上对M2的酶学性质进行测定,测得其最适pH为5.0,最适温度为37℃。通过稳定性测定M2的pH稳定性和热稳定性与野生型GadB-WT相比都有一定程度的增强。M2的动力学参数Km值为7.316 μmol/L,kcat为13.387 s-1,kcat/Km为1.830 L/(s·μmol)。研究获得的组合突变体M2进一步丰富了催化合成γ-氨基丁酸的GadB突变体酶库,具有良好应用前景。

关键词: 谷氨酸脱羧酶γ-氨基丁酸定点突变发酵优化    
Abstract:

By combining and screening several mutations of glutamate decarboxylase (GadB) derived from E. coli, a combined mutant M2 with a wider pH range, higher catalytic activity and higher pH and thermal stabilities was obtained. Compared with the wild-type GadB-WT, the pH range of the combined mutant M2 was effectively broadened, and it produced a higher catalytic activity of 113.43% over the wild-type GadB-WT under pH6.0. After the optimization for fermentation medium and induction conditions of the recombinant bacteria, an overall 104.13% increase of enzyme activity was gained over the unoptimized medium. On this basis, the enzymatic properties of M2 were determined. The optimum pH was 5.0 and the optimum temperature was 37℃. Compared with wild-type Gad-WT, the pH stability and thermal stability of M2 were enhanced to some extent. The kinetic parameters of M2 were determined as follows:Km was 7.316 μmol/L, kcat was 13.387 s-1, and kcat/Km was 1.830 L/(s·μmol). The combined mutant M2 obtained in this study further enriches the GAD mutant enzyme library for the synthesis of γ-aminobutyric acid and has a promising application prospect.

Key words: Glutamate decarboxylase    γ-Aminobutyric acid    Site-directed mutagenesis    Fermentation optimization
收稿日期: 2022-10-19 出版日期: 2023-06-01
ZTFLH:  Q814  
基金资助: *国家自然科学基金(21878068);国家自然科学基金(2217083);河北省省级科技计划(20372802D);河北省自然科学基金(B2020202036)
通讯作者: **电子信箱: yanjunjiang@hebut.edu.cn; heying1980@hebut.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周丽亚
牛玉杰
郑晓冰
姜艳军
马丽
白敬
贺莹

引用本文:

周丽亚, 牛玉杰, 郑晓冰, 姜艳军, 马丽, 白敬, 贺莹. 谷氨酸脱羧酶的分子改造及酶学性质研究*[J]. 中国生物工程杂志, 2023, 43(5): 24-36.

ZHOU Li-ya, NIU Yu-jie, ZHENG Xiao-bing, JIANG Yan-jun, MA Li, BAI Jing, HE Ying. Molecular Modification and Enzymatic Properties of Glutamate Decarboxylase. China Biotechnology, 2023, 43(5): 24-36.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2210029        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I5/24

图1  GABA(a)和偕二胺(b)合成反应方程式
编号 因素 水平
-1 0 1
A 甘油浓度/(g/L) 4 8 12
B 复合氮源浓度/(g/L) 20 25 30
C 复合氮源比例/(g:g) 0.5 1 1.5
D 磷酸盐浓度/(mmol/L) 100 120 140
表1  Box-Behnken实验设计的因素与水平
来源 名称 pH 温度/℃ 比酶活/(U/mg) 参考文献
E.coli GadB-WT 4.5 40 86 本文
M1 4.0 37 83 本文
M2 5.0 37 137 本文
M3 4.0 37 110 本文
Glu89Gln/Δ452-466 4.0 37 32~35 [18]
Glu89Gln/His465Ala 4.0 37 100~105 [18]
L.brevis CGMCC 1306 Wild-type GAD 4.8 48 7.2~7.5 [19]
GADΔC 4.8 48 7.5~8.0 [19]
L.brevis Lb85 GadB1 4.6 40 24~26 [20]
GadB1T17I/D294G/E312S/Q346H 4.0 40 62~65 [20]
L.plantarum ATCC 14917 GAD-WT 5.0 40 8.9 [21]
GAD Δ11 5.0 37 9.8 [21]
E.raffinosus GAD 4.6 45 21.7 [27]
N.crassa GAD 5.0 37 2.76 [28]
A. oryzae GAD 5.5 60 48.2 [29]
T.kodakaraensis GAD 8.0~9.0 90 NR [30]
P.horikoshii PhGAD 8.0 >97 0.26 [31]
表2  几种来源的GAD的活性比较
图2  GadBs活性口袋体积预测
图3  GadBs的SDS-PAGE分析
图4  GadBs在pH4.5和pH6.0的酶活力
实验编号 A B C D 比酶活/(U/mL)
1 0 0 0 0 4.040
2 1 0 -1 0 3.415
3 0 -1 1 0 3.667
4 0 0 -1 -1 2.680
5 0 1 0 1 3.234
6 0 -1 -1 0 3.218
7 0 1 -1 0 3.623
8 0 0 0 0 3.866
9 -1 0 -1 0 3.015
10 1 1 0 0 3.083
11 0 -1 0 1 3.605
12 -1 0 0 1 3.280
13 -1 0 0 -1 3.080
14 1 0 1 0 2.677
15 0 1 1 0 2.404
16 -1 1 0 0 3.171
17 0 -1 0 -1 3.484
18 0 0 1 -1 3.605
19 0 0 0 0 3.898
20 0 0 1 1 2.448
21 0 1 0 -1 3.230
22 -1 -1 0 0 3.450
23 0 0 -1 1 3.814
24 -1 0 1 0 3.152
25 1 0 0 1 3.251
26 1 0 0 -1 3.410
27 1 -1 0 0 3.565
表3  Box-Behnken Design实验结果
来源 平方和 自由度 均方 F P
Model 4.539 4 14 0.324 2 64.393 4 < 0.000 1 显著
A 0.005 3 1 0.005 3 1.055 1 0.324 6
B 0.420 0 1 0.420 0 83.410 6 < 0.000 1
C 0.273 3 1 0.273 3 54.278 2 < 0.000 1
D 0.001 7 1 0.001 7 0.336 1 0.572 8
AB 0.010 2 1 0.010 2 2.025 9 0.180 1
AC 0.191 6 1 0.191 6 38.055 9 < 0.000 1
AD 0.032 2 1 0.032 2 6.398 8 0.026 4
BC 0.695 1 1 0.695 1 138.051 6 < 0.000 1
BD 0.003 5 1 0.003 5 0.685 5 0.423 9
CD 1.312 2 1 1.312 2 260.591 4 < 0.000 1
A2 0.771 8 1 0.771 8 153.280 8 < 0.000 1
B2 0.287 9 1 0.287 9 57.183 3 < 0.000 1
C2 1.251 8 1 1.251 8 248.610 1 < 0.000 1
D2 0.508 5 1 0.508 5 100.995 0 < 0.000 1
残差 0.060 4 12 0.005 0
失拟值 0.043 4 10 0.004 3 0.508 8 0.809 4 不显著
纯误差 0.017 0 2 0.008 5
总离差 4.599 8 26
表4  Box-Behnken Design实验方差分析
图5  各变量对M2酶活力的交互影响
图6  诱导条件对M2发酵的影响
图7  GadB-WT和M2的最适pH(a)和最适温度(b)
图8  GadB-WT和M2的pH稳定性(a)和热稳定性(b)
Km/(μmol/L) kcat/(s-1) kcat/Km/
[L/(s·μmol)]
GadB-WT 8.155 3.446 0.423
M2 7.316 13.387 1.830
表5  GadB-WT和M2的动力学参数
图9  GadBs活性位点的3D结构
图10  GadB-WT和M2的表面静电势和B-factor值分布示意图
[1] Hong A R, Kim Y A, Bae J H, et al. A possible link between parathyroid hormone secretion and local regulation of GABA in human parathyroid adenomas. The Journal of Clinical Endocrinology & Metabolism, 2016, 101(6): 2594-2601.
doi: 10.1210/jc.2015-4329
[2] Xu N, Wei L, Liu J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World Journal of Microbiology and Biotechnology, 2017, 33(3): 64.
doi: 10.1007/s11274-017-2234-5 pmid: 28247260
[3] Piao X, Jiang S H, Wang J N, et al. Pingchuan formula attenuates airway mucus hypersecretion via regulation of the PNEC-GABA-IL13-Muc5ac axis in asthmatic mice. Biomedicine & Pharmacotherapy, 2021, 140: 111746.
doi: 10.1016/j.biopha.2021.111746
[4] Whissell P D, Bang J Y, Khan I, et al. Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition. eNeuro, 2019, 6(1): ENEURO.0360-ENEURO.0318.2019.
[5] Karim N, Khan I, Abdelhalim A, et al. Stigmasterol can be new steroidal drug for neurological disorders: evidence of the GABAergic mechanism via receptor modulation. Phytomedicine, 2021, 90: 153646.
doi: 10.1016/j.phymed.2021.153646
[6] Tu J, Jin Y C, Zhuo J, et al. Exogenous GABA improves the antioxidant and anti-aging ability of silkworm (Bombyx mori). Food Chemistry, 2022, 383: 132400.
doi: 10.1016/j.foodchem.2022.132400
[7] Park S J, Kim E Y, Noh W, et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 2013, 36(7): 885-892.
doi: 10.1007/s00449-012-0821-2 pmid: 23010721
[8] Xu M J, Gao H, Ma Z F, et al. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids, 2022, 54(11): 1437-1450.
doi: 10.1007/s00726-022-03174-0
[9] Grewal J, Khare S K. 2-Pyrrolidone synthesis from γ-aminobutyric acid produced by Lactobacillus brevis under solid-state fermentation utilizing toxic deoiled cottonseed cake. Bioprocess and Biosystems Engineering, 2017, 40(1): 145-152.
doi: 10.1007/s00449-016-1683-9
[10] Mozzarelli A, Bettati S. Exploring the pyridoxal 5'-phosphate-dependent enzymes. The Chemical Record, 2006, 6(5): 275-287.
doi: 10.1002/(ISSN)1528-0691
[11] Jackson L K, Baldwin J, Akella R, et al. Multiple active site conformations revealed by distant site mutation in ornithine decarboxylase. Biochemistry, 2004, 43(41): 12990-12999.
pmid: 15476392
[12] Hua Y J, Lyu C J, Liu C Y, et al. Improving the thermostability of glutamate decarboxylase from Lactobacillus brevis by consensus mutagenesis. Applied Biochemistry and Biotechnology, 2020, 191(4): 1456-1469.
doi: 10.1007/s12010-020-03283-0
[13] Takagi H, Kozuka K, Mimura K, et al. Design of a full-consensus glutamate decarboxylase and its application to GABA biosynthesis. ChemBioChem, 2022, 23(8): e202100447.
[14] Fan L Q, Li M W, Qiu Y J, et al. Increasing thermal stability of glutamate decarboxylase from Escherichia coli by site-directed saturation mutagenesis and its application in GABA production. Journal of Biotechnology, 2018, 278: 1-9.
doi: S0168-1656(18)30119-6 pmid: 29660473
[15] Jun C H, Joo J C, Lee J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Journal of Biotechnology, 2014, 174: 22-28.
doi: 10.1016/j.jbiotec.2014.01.020
[16] Pennacchietti E, Lammens T M, Capitani G, et al. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH. The Journal of Biological Chemistry, 2009, 284(46): 31587-31596.
doi: 10.1074/jbc.M109.049577
[17] Choi J W, Yim S S, Lee S H, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microbial Cell Factories, 2015, 14: 21.
doi: 10.1186/s12934-015-0205-9
[18] Thu Ho N A, Hou C Y, Kim W H, et al. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. Journal of Bioscience and Bioengineering, 2013, 115(2): 154-158.
doi: 10.1016/j.jbiosc.2012.09.002
[19] Yu K, Lin L, Hu S, et al. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH. Enzyme and Microbial Technology, 2012, 50(4-5): 263-269.
doi: 10.1016/j.enzmictec.2012.01.010
[20] Shi F, Xie Y L, Jiang J J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme and Microbial Technology, 2014, 61-62: 35-43.
doi: 10.1016/j.enzmictec.2014.04.012
[21] Shin S M, Kim H, Joo Y, et al. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12186-12193.
doi: 10.1021/jf504656h
[22] 许建军, 江波, 许时婴. 比色法快速测定乳酸菌谷氨酸脱羧酶活力及其应用. 微生物学通报, 2004, 31(2): 66-71.
Xu J J, Jiang B, Xu S Y. Rapid determination of glutamate decarboxylase activity from lactic acid bacteria by spectrometric method and its applications. Microbiology, 2004, 31(2): 66-71.
[23] Cui W T, Xue H R, Cheng H D, et al. Increasing the amount of phosphoric acid enhances the suitability of Bradford assay for proteomic research. Electrophoresis, 2019, 40(7): 1107-1112.
doi: 10.1002/elps.201800430 pmid: 30570157
[24] Le Q A T, Joo J C, Yoo Y J, et al. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnology and Bioengineering, 2012, 109(4): 867-876.
doi: 10.1002/bit.24371
[25] Wang Y W, Fu Z, Huang H Q, et al. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 2012, 112: 275-279.
doi: 10.1016/j.biortech.2012.02.092
[26] Guérin F, Barbe S, Pizzut-Serin S, et al. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. The Journal of Biological Chemistry, 2012, 287(9): 6642-6654.
doi: 10.1074/jbc.M111.322917
[27] Chang C Y, Zhang J, Ma S X, et al. Purification and characterization of glutamate decarboxylase from Enterococcus raffinosus TCCC11660. Journal of Industrial Microbiology & Biotechnology, 2017, 44(6): 817-824.
[28] Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia. The Journal of Biological Chemistry, 1991, 266(8): 5135-5139.
doi: 10.1016/S0021-9258(19)67765-3
[29] Tsuchiya K, Nishimura K, Iwahara M. Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. Food Science and Technology Research, 2003, 9(3): 283-287.
doi: 10.3136/fstr.9.283
[30] Kimi T, Kenryo N, Masayoshi I. Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. Food Science and Technology Research, 2003, 9(3): 283-287.
doi: 10.3136/fstr.9.283
[31] Hong S J, Ullah I, Park G S, et al. Overexpression and characterization of recombinant glutamate decarboxylase from Thermococcus kodakaraensis KOD1. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(2): 213-218.
doi: 10.1007/s13765-012-1006-z
[32] Kim H W, Kashima Y, Ishikawa K, et al. Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii. Bioscience, Biotechnology, and Biochemistry, 2009, 73(1): 224-227.
doi: 10.1271/bbb.80583
[33] Yu J, Zhou Y, Tanaka I, et al. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 2010, 26(1): 46-52.
doi: 10.1093/bioinformatics/btp599 pmid: 19846440
[34] Malakar P, Venkatesh K V. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied Microbiology and Biotechnology, 2012, 93(6): 2543-2549.
doi: 10.1007/s00253-011-3642-3
[35] Capitani G. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. The EMBO Journal, 2003, 22(16): 4027-4037.
doi: 10.1093/emboj/cdg403
[36] Der B S, Kluwe C, Miklos A E, et al. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS One, 2013, 8(5): e64363.
doi: 10.1371/journal.pone.0064363
[1] 章嫣,马文豪,赵天意,吴小兵,盛望,杨怡姝. 人β-半乳糖苷酶R299L突变体的获得与活性研究*[J]. 中国生物工程杂志, 2022, 42(9): 39-49.
[2] 庞光武,梁智群. 海洋枯草芽孢杆菌产纤溶酶的诱变育种与发酵工艺优化*[J]. 中国生物工程杂志, 2022, 42(12): 27-36.
[3] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[4] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[5] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[6] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[7] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[8] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[9] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[10] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[11] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[12] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[13] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[14] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.
[15] 李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲. 乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究[J]. 中国生物工程杂志, 2015, 35(6): 8-13.