Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 27-36    DOI: 10.13523/j.cb.2207056
技术与方法     
海洋枯草芽孢杆菌产纤溶酶的诱变育种与发酵工艺优化*
庞光武,梁智群()
广西大学生命科学与技术学院 南宁 530004
Mutagenic Breeding and Optimization of Fermentation Conditions of Fibrinolytic Enzyme from Marine Bacillus subtilis
PANG Guang-wu,LIANG Zhi-qun()
College of Life Science and Technology, Guangxi University, Nanning 530004, China
 全文: PDF(1109 KB)   HTML
摘要:

目的:对海洋来源的具有产纤溶酶能力的枯草芽孢杆菌(Bacillus subtilis)LC6-1进行紫外诱变,得到高产且稳定的突变株PW6-3,对该突变株发酵产酶的条件进行优化。方法:采用单因素和正交试验进行发酵培养基组分和培养条件的优化。结果:突变株PW6-3的酶活力为(6 960.21 ± 85.51)U/mL,较原始菌株提高了30.48%。以PW6-3为出发菌株,采用单因素及正交试验的方法对菌株进行发酵培养基组分与培养条件优化,最终得到的最佳培养基组分是:玉米淀粉30 g/L,玉米浆干粉40 g/L,CaCl2 3 g/L;最佳发酵培养条件是:32℃,转速200 r/min,接种量3%,pH 6.5,种龄18 h,发酵培养时间66 h,最终菌株的酶活力稳定在(9 203.63 ± 67.85)U/mL。结论:发酵工艺优化后,菌株PW6-3纤溶酶产量较诱变之前的菌株LC6-1提高72.53%,且发酵工艺成本较低,具有较好的经济效益。

关键词: 枯草芽孢杆菌纤溶酶诱变发酵优化    
Abstract:

Objective: Cardiovascular diseases caused by thrombus have severely impaired human health. However, there are most of defects on traditional thrombolytic agents, like high price, low fibrin specificity and side effect. Enzyme from marine environment are rarely reported and expected to be efficient and economical thrombolytic drugs. Methods: In this experiment, a mutant strain PW6-3 with high fibrinolytic activity was obtained by UV mutagenesis using the marine-derived Bacillus subtilis LC6-1. The acquire mutant PW6-3 was subjected to process optimization of fibrinolytic enzyme production. Results: The UV-mutagenized high-yielding mutant strain PW6-3 was (6 960.21 ± 85.51) U/mL, which was 30.48% higher than the initial strain. The medium components and culture conditions of strain PW6-3 in shake-flask were optimized by single factor and orthogonal experiments. The optimal medium components were: Corn starch 30 g/L, corn pulp dry powder 40 g/L, CaCl2 3g/L. The optimal culture conditions were: Temperature of 32℃, speed of 200 r/min, loading volume of 50 mL in 250 mL flask, inoculation volume of 3% (v/v), initial pH of 6.5, seed age of 18 h, fermentation time of 66 h. Conclusion: After fermentation optimization, the enzyme activity of strain PW6-3 reached (9 203.63 ± 67.85) U/mL, which was 72.53% higher than initial strain LC6-1. The optimized yield is at a high level in the world at present.

Key words: Bacillus subtilis    Fibrinolytic enzyme    Mutagenesis    Fermentation optimization
收稿日期: 2022-07-25 出版日期: 2023-01-05
ZTFLH:  Q939  
基金资助: *国家自然科学基金资助项目(21062001)
通讯作者: 梁智群     E-mail: zqliang@gxu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
庞光武
梁智群

引用本文:

庞光武,梁智群. 海洋枯草芽孢杆菌产纤溶酶的诱变育种与发酵工艺优化*[J]. 中国生物工程杂志, 2022, 42(12): 27-36.

PANG Guang-wu,LIANG Zhi-qun. Mutagenic Breeding and Optimization of Fermentation Conditions of Fibrinolytic Enzyme from Marine Bacillus subtilis. China Biotechnology, 2022, 42(12): 27-36.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207056        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/27

因素 水平
1 2 3
碳源浓度/(g·L-1) 25 30 35
氮源浓度/(g·L-1) 35 40 45
无机盐浓度/(g·L-1) 2.5 3 3.5
误差 - - -
表1  正交试验L9(34)的因素和水平
图1  尿激酶标准曲线
图2  紫外诱变致死率曲线
菌株编号 圈菌比 酶活力/(U·mL-1) 活力提高/%
LC6-1(初始菌) 2.14 5 334.51 ± 135.7 -
PW6-3 3.12 7 070.33 ± 50.67 32.54
表2  紫外诱变的平板初筛和摇瓶复筛结果
图3  紫外诱变菌株PW6-3的遗传稳定性
图4  碳源(a)与玉米淀粉浓度(b)对酶活力的影响
图5  氮源种类(a)与玉米浆干粉浓度(b)对酶活力的影响
图6  金属离子(a)与CaCl2的添加量(b)对酶活力的影响
试验 A(玉米淀粉) B(玉米浆干粉) C(CaCl2) D(空列) 酶活力(U·mL-1)
1 1 1 1 1 7 676.25
2 1 2 2 2 8 076.71
3 1 3 3 3 7 697.76
4 2 1 2 3 7 929.95
5 2 2 3 1 7 667.75
6 2 3 1 2 7 393.91
7 3 1 3 2 7 446.15
8 3 2 1 3 7 350.39
9 3 3 2 1 7 239.08
K1 7 816.91 7 684.12 7 473.18 7 561.03 -
K2 7 696.87 7 731.62 7 748.58 7 638.59 -
K3 7 345.21 7 443.25 7 637.22 7 659.37 -
R 471.70 288.37 275.38 98.34 -
表3  正交试验结果
因素 偏差平方和 自由度 F比 F临界值 显著性
碳源浓度 360 576.79 2 23.37 19.000 *
氮源浓度 143 428.33 2 8.89 19.000 -
无机盐浓度 115 152.40 2 7.144 19.000 -
误差 16 118.50 2 1.000 - -
表4  正交试验结果方差分析
图7  温度对酶活力的影响
图8  转速(a)与装液量(b)对酶活力的影响
图9  接种量对酶活力的影响
图10  初始pH对酶活力的影响
图11  菌株PW6-3的生长曲线(a)与种龄对产酶的影响(b)
图12  发酵时间对酶活力的影响
[1] Wu Y F, Benjamin E J, MacMahon S. Prevention and control of cardiovascular disease in the rapidly changing economy of China. Circulation, 2016, 133(24): 2545-2560.
doi: 10.1161/CIRCULATIONAHA.115.008728 pmid: 27297347
[2] Lu F X, Lu Z X, Bie X M, et al. Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thrombosis Research, 2010, 126(5): e349-e355.
doi: 10.1016/j.thromres.2010.08.003
[3] Wu J X, Zhao X Y, Pan R, et al. Glycosylated trypsin-like proteases from earthworm Eisenia fetida. International Journal of Biological Macromolecules, 2007, 40(5): 399-406.
doi: 10.1016/j.ijbiomac.2006.10.001
[4] Yang J, Wang Y H, Jiang T F, et al. Depolymerized glycosaminoglycan and its anticoagulant activities from sea cucumber Apostichopus japonicus. International Journal of Biological Macromolecules, 2015, 72: 699-705.
doi: 10.1016/j.ijbiomac.2014.09.025 pmid: 25260572
[5] Lee K S, Kim B Y, Yoon H J, et al. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Developmental & Comparative Immunology, 2016, 63: 27-35.
[6] Zhao T, Xiong J Q, Chen W, et al. Purification and characterization of a novel fibrinolytic enzyme from Cipangopaludina cahayensis. Iranian Journal of Biotechnology, 2021, 19(1): e2805.
[7] Kim D W, Choi J H, Park S E, et al. Purification and characterization of a fibrinolytic enzyme from Petasites japonicus. International Journal of Biological Macromolecules, 2015, 72: 1159-1167.
doi: 10.1016/j.ijbiomac.2014.09.046
[8] Katrolia P, Liu X L, Zhao Y Y, et al. Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). International Journal of Biological Macromolecules, 2020, 146: 897-906.
doi: S0141-8130(19)34487-3 pmid: 31726136
[9] Liang L, Ao L, Ma T, et al. Sulfated modification and anticoagulant activity of pumpkin (Cucurbita pepo, Lady Godiva) polysaccharide. International Journal of Biological Macromolecules, 2018, 106: 447-455.
doi: S0141-8130(17)32171-2 pmid: 28797813
[10] Cao X Y, Che Z Q, Zhou B, et al. Investigations in ultrasound-assisted anticoagulant production by marine Bacillus subtilis ZHX. Ultrasonics Sonochemistry, 2020, 64: 104994.
doi: 10.1016/j.ultsonch.2020.104994
[11] Kumar S S, Haridas M, Abdulhameed S. A novel fibrinolytic enzyme from marine Pseudomonas aeruginosa KU1 and its rapid in vivo thrombolysis with little haemolysis. International Journal of Biological Macromolecules, 2020, 162: 470-479.
doi: 10.1016/j.ijbiomac.2020.06.178
[12] Yao Z, Kim J A, Kim J H. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. Journal of Microbiology and Biotechnology, 2019, 29(3): 347-356.
doi: 10.4014/jmb.1810.10053
[13] Souza F A S D, Sales A E, Costa e Silva P E, et al. Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens. Macromolecular Research, 2016, 24(7): 587-595.
doi: 10.1007/s13233-016-4089-2
[14] Chandramohan M, Yee C Y, Kei Beatrice P H, et al. Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA 02 isolated from poultry slaughter house soils. Biocatalysis and Agricultural Biotechnology, 2019, 22: 101371.
doi: 10.1016/j.bcab.2019.101371
[15] Al Farraj D A, Kumar T S J, Vijayaraghavan P, et al. Enhanced production, purification and biochemical characterization of therapeutic potential fibrinolytic enzyme from a new Bacillus flexus from marine environment. Journal of King Saud University - Science, 2020, 32(7): 3174-3180.
doi: 10.1016/j.jksus.2020.09.004
[16] Astrup T, Müllertz S. The fibrin plate method for estimating fibrinolytic activity. Archives of Biochemistry and Biophysics, 1952, 40(2): 346-351.
pmid: 12997222
[17] Lin H T V, Hwang P A, Lin T C, et al. Production of Bacillus subtilis-fermented red alga Porphyra dentata suspension with fibrinolytic and immune-enhancing activities. Bioscience, Biotechnology, and Biochemistry, 2014, 78(6): 1074-1081.
doi: 10.1080/09168451.2014.915726
[18] Zeng W, Chen G G, Wu Y G, et al. Nonsterilized fermentative production of poly-γ-glutamic acid from cassava starch and corn steep powder by a thermophilic Bacillus subtilis. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 2917-2924.
[19] Toleco M R M, Duque S M M, Tan A G, et al. An optimized sustainable medium for the direct lactic acid fermentation of sago (Metroxylon sagu Rottb.) starch by Enterococcus faecium DMF78. International Food Research Journal, 2016, 23(3): 1274-1279.
[20] Deepak V, Kalishwaralal K, Ramkumarpandian S, et al. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 2008, 99(17): 8170-8174.
doi: 10.1016/j.biortech.2008.03.018 pmid: 18430568
[21] Krulwich T A, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 2011, 9(5): 330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825
[22] Pan S H, Chen G G, Zeng J J, et al. Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: process optimization and kinetic modeling. Biochemical Engineering Journal, 2019, 141: 268-277.
doi: 10.1016/j.bej.2018.11.002
[23] Narasimhan M K, Chandrasekaran M, Rajesh M. Fibrinolytic enzyme production by newly isolated Bacillus cereus SRM-001 with enhanced in-vitro blood clot Lysis potential. The Journal of General and Applied Microbiology, 2015, 61(5): 157-164.
doi: 10.2323/jgam.61.157
[24] Anusree M, Swapna K, Aguilar C N, et al. Optimization of process parameters for the enhanced production of fibrinolytic enzyme by a newly isolated marine bacterium. Bioresource Technology Reports, 2020, 11: 100436.
doi: 10.1016/j.biteb.2020.100436
[1] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[2] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[3] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[4] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[5] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[6] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[7] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[8] 杨建伟, 薛正莲, 朱昊, 杨蒙, 王洲. ARTP辐照对磷脂酶A1重组质粒的诱变效应[J]. 中国生物工程杂志, 2017, 37(6): 78-85.
[9] 王瑜,刘治,白文成,许丽萍,韩润林. 重组不可分型流感嗜血杆菌E蛋白与血浆脂蛋白(a)的相互作用[J]. 中国生物工程杂志, 2017, 37(12): 14-20.
[10] 王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.
[11] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[12] 田淑翠, 牛延宁, 常忠义, 高红亮, 步国健, 金明飞. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株[J]. 中国生物工程杂志, 2016, 36(9): 47-53.
[13] 吉美萍, 庞艳波, 付丽丽, 那日, 郭九峰, 王志永. γ-聚谷氨酸基因工程研究进展与展望[J]. 中国生物工程杂志, 2016, 36(6): 107-118.
[14] 胡桂元, 杨套伟, 饶志明, 刘梅, 徐美娟, 张显. 增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量[J]. 中国生物工程杂志, 2016, 36(6): 57-64.
[15] 张映曈, 陈海琴, 宋元达, 张灏, 陈永泉, 陈卫. 卷枝毛霉pyrG基因缺陷突变株的诱变筛选与鉴定[J]. 中国生物工程杂志, 2016, 36(3): 38-42.