Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (5): 37-44    DOI: 10.13523/j.cb.2210024
研究报告     
不同信号肽及其组合对果聚糖蔗糖酶异源表达的影响*
王茂军,色依德·斯马依,蔡逸安,李庆刚,路福平,李玉()
工业发酵微生物教育部重点实验室 天津科技大学生物工程学院 天津 300457
Effects of Different Signal Peptides and Their Combinations on Heterologous Expression of Levansucrase
WANG Mao-jun,SIMAYI Seyide,CAI Yi-an,LI Qing-gang,LU Fu-ping,LI Yu()
Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,College of Biotechnology, Tianjin University of Science&Technology,Tianjin 300457,China
 全文: PDF(977 KB)   HTML
摘要:

为了实现果聚糖蔗糖酶在解淀粉芽孢杆菌Bacillus amyloliquefaciens 018(简称G3)中的高效表达,选择来源于不同芽孢杆菌的4个果聚糖蔗糖酶基因lsLichlsAmylsSublsMega进行异源表达,并将课题组前期确定的对碱性蛋白酶酶活提升较高的5种信号肽进行筛选和组合。其中来源于地衣芽孢杆菌Bacillus licheniformis RN-01的lsLich在重组菌株G3/pLY-2-lsLich中的酶活力最高,酶活力为62.73 U/mL。以LS-Lich作为目的蛋白筛选单信号肽和双信号肽,其中信号肽SPDacB和SPAmyE组合的重组菌株G3/pLY-2-SDA-ls酶活最高,胞外酶活达到125.76 U/mL,较重组菌G3/pLY-2-SD-ls和G3/pLY-2-SA-ls分别提高了31.3%和39.2%,较原始菌株提高了100.49%。该结果表明双信号肽较单信号肽有助于提高LS-Lich的分泌量,同时信号肽组合顺序不同也产生一定的差异。

关键词: 信号肽果聚糖蔗糖酶解淀粉芽孢杆菌异源表达    
Abstract:

To express levansucrase in Bacillus amyloliquefaciens 018 (G3) efficiently. Four levansucrase genes lsLich, lsAmy, lsSub and lsMega from different Bacillus species were heterologously expressed, and five signal peptides with relatively high levels of alkaline protease identified by the research group were screened and combined. lsLich derived from Bacillus licheniformis RN-01 had the highest enzyme activity in the recombinant strain G3/pLY-2-lsLich, with an enzyme activity of 62.73 U/mL. LS-Lich was used as the target protein to screen single signal peptide and double signal peptide. The recombinant strain G3/pLY-2-SDA-ls combined with SPDacB and SPAmyE had the highest enzyme activity, and the extracellular enzyme activity reached 125.76 U/mL. Compared with the recombinant strain G3/pLY-2-SD-ls and G3/pLY-2-SA-ls, they increased by 31.3% and 39.2%, respectively, and increased by 100.49% compared with the original strain. The results indicated that the double signal peptide was helpful in increasing the secretion of LS-Lich compared with the single signal peptide, and the combination order of signal peptides also produced some differences.

Key words: Signal peptide    Levansucrase    Bacillus amyloliquefaciens    Heterologous expression
收稿日期: 2022-10-17 出版日期: 2023-06-01
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2021YFC2100402)
通讯作者: **电子信箱: liyu@tust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王茂军
色依德·斯马依
蔡逸安
李庆刚
路福平
李玉

引用本文:

王茂军, 色依德·斯马依, 蔡逸安, 李庆刚, 路福平, 李玉. 不同信号肽及其组合对果聚糖蔗糖酶异源表达的影响*[J]. 中国生物工程杂志, 2023, 43(5): 37-44.

WANG Mao-jun, SIMAYI Seyide, CAI Yi-an, LI Qing-gang, LU Fu-ping, LI Yu. Effects of Different Signal Peptides and Their Combinations on Heterologous Expression of Levansucrase. China Biotechnology, 2023, 43(5): 37-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2210024        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I5/37

图1  果聚糖蔗糖酶的水解、转糖基和聚合作用
名称 氨基酸序列 来源
SacB MNIKKFAKQATVLTFTTALLAGGATQAFA B.subtilis 168
DacB MRIFKKAVFVIMISFLIATVNVNTAHA B.subtilis 168
YoaW MKKMLMLAFTFLLALTIHVGEASAV B.subtilis 168
NprE MGLGKKLSVAVAASFMSLSISLPGVQA B.subtilis 168
AmyE MFAKRFKTSLLPLFAGFLLLFHLVLAGPAAASA B.subtilis 168
表1  5种信号肽氨基酸序列及其来源
图2  重组载体中不同信号肽的结构示意图
图3  不同表达载体的PCR验证图
图4  重组菌G3/pLY-2-ls不同发酵时间的酶活力测定
图5  不同信号肽重组菌株的酶活力测定
图6  不同信号肽组合重组菌的酶活力比较
图7  信号肽串联重组菌株的SDS-PAGE验证图
[1] Srikanth R, Siddartha G, Sundhar Reddy C H S S, et al. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate Polymers, 2015, 123: 8-16.
doi: 10.1016/j.carbpol.2014.12.079 pmid: 25843829
[2] Liu Q, Yu S H, Zhang T, et al. Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydrate Polymers, 2017, 157: 1732-1740.
doi: 10.1016/j.carbpol.2016.11.057
[3] Dahech I, Harrabi B, Hamden K, et al. Antioxidant effect of nondigestible levan and its impact on cardiovascular disease and atherosclerosis. International Journal of Biological Macromolecules, 2013, 58: 281-286.
doi: 10.1016/j.ijbiomac.2013.04.058 pmid: 23624165
[4] Oscarson S, Sehgelmeble F W. Chemical syntheses of inulin and levan structures. The Journal of Organic Chemistry, 2002, 67(24): 8457-8462.
doi: 10.1021/jo020341q
[5] Esawy M A, Ahmed E F, Helmy W A, et al. Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydrate Polymers, 2011, 86(2): 823-830.
doi: 10.1016/j.carbpol.2011.05.035
[6] Kim K H, Chung C B, Kim Y H, et al. Cosmeceutical properties of levan produced by Zymomonas mobilis. International Journal of Cosmetic Science, 2006, 28(3): 231.
[7] 陆娟, 卢丽丽, 肖敏. Levan蔗糖酶及其在Levan果聚糖合成中的应用. 微生物学报, 2014, 54(6): 601-607.
Lu J, Lu L L, Xiao M. Application of levansucrase in levan synthesis-a review. Acta Microbiologica Sinica, 2014, 54(6): 601-607.
[8] Ko H, Bae J H, Sung B H, et al. Efficient production of levan using a recombinant yeast Saccharomyces cerevisiae hypersecreting a bacterial levansucrase. Journal of Industrial Microbiology & Biotechnology, 2019, 46(11): 1611-1620.
[9] 唐煜, 陈晟, 段绪果, 等. 重组果聚糖蔗糖酶的发酵优化及应用. 食品与生物技术学报, 2019, 38(4): 97-103.
Tang Y, Chen S, Duan X G, et al. Study on fermentation optimization and application of recombinant levansucrase. Journal of Food Science and Biotechnology, 2019, 38(4): 97-103.
[10] 孙惟沁, 沐万孟, 张涛, 等. 产果聚糖蔗糖酶重组枯草芽孢杆菌的构建及表达. 食品与生物技术学报, 2019, 38(10): 79-86.
Sun W Q, Mu W M, Zhang T, et al. Construction and expression of a recombinant Bacillus subtilis producing levansucrase. Journal of Food Science and Biotechnology, 2019, 38(10): 79-86.
[11] Tsirigotaki A, De Geyter J, Šoštarić N, et al. Protein export through the bacterial Sec pathway. Nature Reviews Microbiology, 2017, 15(1): 21-36.
doi: 10.1038/nrmicro.2016.161 pmid: 27890920
[12] Chen J Q, Fu G, Gai Y M, et al. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microbial Cell Factories, 2015, 14: 92.
doi: 10.1186/s12934-015-0282-9
[13] 潘力, 陈倩琳, 王斌. 等. 一种具有双重启动子和双重分泌信号功能的组合DNA片段及其应用:中国, CN202111161871.8. 2022-01-21. https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0IES_dQYC5QiRib7Ie6CXGnT8XKcUZZ06ynewcaDSprj4EDFVzijRc0q3Jy-moXng&uniplatform=NZKPT&src=copy.
Pan L, Chen Q L, Wang B, et al. DNA fragment with functions of promoter and coding signal peptide and application of DNA fragment in production of alpha-L-arabinanase: China, CN202111161871.8. 2022-01-21.https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0IES_dQYC5QiRib7Ie6CXGnT8XKcUZZ06ynewcaDSprj4EDFVzijRc0q3Jy-moXng&uniplatform=NZKPT&src=copy.
[14] Gao W X, Liu F H, Zhang W, et al. Mutations in genes encoding antibiotic substances increase the synthesis of poly-γ-glutamic acid in Bacillus amyloliquefaciens LL3. MicrobiologyOpen, 2017, 6(1): e00398.
doi: 10.1002/mbo3.2016.6.issue-1
[15] Cai D, Rao Y, Zhan Y, et al. Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. Journal of Applied Microbiology, 2019, 126(6): 1632-1642.
doi: 10.1111/jam.14192 pmid: 30609144
[16] Gao W X, He Y L, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL 3 for enhanced poly‐γ‐glutamic acid synthesis. Microbial Biotechnology, 2019, 12(5): 932-945.
doi: 10.1111/mbt2.v12.5
[17] Feng J, Quan Y F, Gu Y Y, et al. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microbial Cell Factories, 2017, 16(1): 88.
doi: 10.1186/s12934-017-0704-y pmid: 28532451
[18] Feng J, Gu Y Y, Quan Y F, et al. Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens. Scientific Reports, 2015, 5(1): 1-12.
[19] 吴庆. 解淀粉芽孢杆菌胞苷代谢途径分析与高效基因敲除系统构建的研究. 银川: 宁夏大学, 2016.
Wu Q. Analysis of cytosine metabolic pathway of Bacillus amyloliquefaciens and construction of efficient gene knockout system. Yinchuan: Ningxia University, 2016.
[20] Liu Y H, Shi C S, Li D K, et al. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. International Journal of Biological Macromolecules, 2019, 138: 903-911.
doi: 10.1016/j.ijbiomac.2019.07.175
[21] Wu S C, Yeung J C, Duan Y J, et al. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Applied and Environmental Microbiology, 2002, 68(7): 3261-3269.
doi: 10.1128/AEM.68.7.3261-3269.2002
[22] Waldeck J, Meyer-Rammes H, Wieland S, et al. Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. Journal of Biotechnology, 2007, 130(2): 124-132.
pmid: 17481763
[23] Taylan O, Yilmaz M T, Dertli E. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, 2019, 136: 436-444.
doi: S0141-8130(19)31786-6 pmid: 31201910
[24] 张钰文, 袁航, 于江悦, 等. 一株高效降解羽毛废弃物菌株的筛选及表达条件优化. 生物技术通报, 2019, 35(9): 93-98.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0370
Zhang Y W, Yuan H, Yu J Y, et al. Screening of a bacterial strain efficiently degrading feather waste and optimization of its expression condition. Biotechnology Bulletin, 2019, 35(9): 93-98.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0370
[25] Mathiesen G, Sveen A, Brurberg M B, et al. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics, 2009, 10: 425.
doi: 10.1186/1471-2164-10-425 pmid: 19744343
[1] 任明杰,王路路,申纪辉,范若辰,许永斌,张丽影,郑维,权春善. 解淀粉芽孢杆菌Q-426酚酸脱羧酶的克隆表达及酶学性质鉴定*[J]. 中国生物工程杂志, 2022, 42(6): 20-29.
[2] 王荣香,宋佳,孙博,闫雪,张万忠,赵晨. 香豆素类化合物功能及生物合成研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 79-90.
[3] 吴琼,赵昕,杜玉瑶,毛淑红. 细胞色素P450还原酶与CYP17的共表达及其功能分析*[J]. 中国生物工程杂志, 2022, 42(10): 1-8.
[4] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[5] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[6] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[7] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[8] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[9] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[10] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[11] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[12] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[13] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.
[14] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[15] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.