Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 91-99    DOI: 10.13523/j.cb.20190713
综述     
木聚糖酶异源表达的研究进展 *
李吉萍,包昌杰,陈光(),张斯童()
吉林农业大学生命科学学院 长春 130118
Research Advances in Heterologous Expression of Xylanase
Ji-ping LI,Chang-jie BAO,Guang CHEN(),Si-tong ZHANG()
College of Life Sciences, Jilin Agricultural University, Changchun 130118,China
 全文: PDF(547 KB)   HTML
摘要:

木聚糖(xylan)在自然界中的含量极其丰富,在农作物和农林剩余物中大量存在。随着能源资源问题的日益凸显,对木聚糖的应用和研究越来越受到重视。木聚糖酶(xylanase)是可以将木聚糖降解为低聚木糖和木糖的一类水解酶,近年来,为了实现木聚糖酶的高产、高酶活表达,科研工作者做了大量的研究工作,就木聚糖酶异源表达(heterologous expression)的研究进展进行综述。

关键词: 木聚糖木聚糖酶异源表达    
Abstract:

Xylan is abundant in crops and agricultural and forestry residues. With the increasing emphasis on energy resources, more attention has been paid to the application and research of xylan. Xylanase is a class of hydrolases that can degrade xylan into xylooligosaccharides and xylose. Several improvements were made over the year to achieve high yield and high enzyme activity of xylanase.The research progress of heterologous expression of xylanase were reviewed.

Key words: Xylan    Xylanase    Heterologous    expression
收稿日期: 2018-12-10 出版日期: 2019-08-05
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2017YFD0501000);吉林省秸秆综合利用技术创新平台资助项目(2014【C】-1)
通讯作者: 陈光,张斯童     E-mail: chg61@163.com;18943132269@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李吉萍
包昌杰
陈光
张斯童

引用本文:

李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.

Ji-ping LI,Chang-jie BAO,Guang CHEN,Si-tong ZHANG. Research Advances in Heterologous Expression of Xylanase. China Biotechnology, 2019, 39(7): 91-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190713        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/91

图1  木聚糖酶3D结构模型[5]
木聚糖酶编号 基因来源 蛋白质大
小(kDa)
最适
pH
最适温度
(℃)
酶比活力
(U/mg)
表达宿主
系统
表达
载体
启动子 信号肽 酶表达活力
(U/ml)
EC.3.2.1.8 枯草芽孢杆菌 43.0 10.0 65 NR1) 大肠杆菌BL21 pET26b T7/Lac pelB等 1 201.5
EC.3.2.1.8 黑曲霉XZ-3S 33.47 5.0 45 61.43 大肠杆菌BL21 pET28a T7/Lac pelB NR
NR 黑曲霉 25.0 7.5 37 58.19 枯草芽孢杆菌
WB700
pGJ 148 pglv YnfF NR
EC.3.2.1.8
短小芽孢杆菌
BYGS-20N
28.34
6.8
42
NR
枯草芽孢杆菌
WB700
pBXS
PgsiB
PhoB等
30.89
表1  木聚糖酶在细菌表达系统中的表达
木聚糖酶编号 基因来源 蛋白质大
小(kDa)
最适
pH
最适温
度(℃)
酶比活力
(U/mg)
表达宿主
系统
表达
载体
启动子 信号肽 酶表达活力
(U/ml)
EC.3.2.1.8 黑曲霉XZ-3S 34.5 5.0 45 145.24 毕赤酵母 pPIC9k AOX1 Alpha-
fatorc
NR1)
EC.3.2.1.8 Thermotoga maritima 40.0 6.0 60 NR 毕赤酵母
GS115
pAo815 AOX1 PHO5、
a-factor
8 000
NR 黑曲霉菌株IME-216 35.0 6.0 40 NR 酿酒酵母YS2 pUG6 PGK a-factor 90 000
EC.3.2.1.8 Trichoderma reesei 21.0 6.0 60 NR 毕赤酵母 pPICZaA AOX a-factor 298
EC.3.2.1.8 黑曲霉MC062 23.0 3.5 55 NR 酿酒酵母
INVSc1
pYES6/
CT
GAL1 a-factor 62.5I
NR 黑曲霉 24 5.0 50 NR 酿酒酵母
INVSC1
pYES2 GAL1 a-factor 7.59
表2  木聚糖酶在真菌表达系统中的表达
木聚糖酶
编号
基因
来源
蛋白质大小
(kDa)
最适
pH
最适温
度(℃)
酶比
活力
表达宿
主系统
表达载体 启动子 信号肽 酶表达
活力
EC.3.2.1.8 橄榄绿链霉菌A1 胞内21.0
胞间31.0
NR1) 23 90IU/g鲜叶片(10IU/g总蛋白质)
13IU/g鲜块茎
马铃薯
块茎
含有xynB的组成型和块茎特异性植物表达载体 马铃薯
Patatin
启动子
马铃薯蛋白酶抑制剂II信号肤序列 NR
EC.3.2.1.8 橄榄绿链霉菌A1 21 NR 25 170IU/g鲜叶片(23 IU/mg总蛋白质) 烟草 35S启动子和AMV增强子的组成型表达载体 35S启动子 NR NR
NR 杂合木聚糖酶基因atx NR NR NR 3.51U/g鲜叶片 水稻成
熟胚
pCAMBIA1301 CaMV
35S
启动子
NR NR
表3  木聚糖酶在植物表达系统中的表达
[1] 高雅君, 丁长河 . 木聚糖酶在食品工业中的应用研究进展. 粮食与食品工业, 2017,24(2):32-36.
Gao Y J, Ding C H . Research progress on the application of xylanase in food industry. Cereal and Food Industry, 2017,24(2):32-36.
[2] 吴金连, 薛勇, 黎海龙 , 等. 半纤维素侧链降解酶——α-葡萄糖醛酸酶的研究进展. 新能源进展, 2014,2(5):327-333.
Wu J L, Xue Y, Li H L , et al. Research progress of α-Glucuronidase, an enzyme for degrading hemicellulose side-chain. Advances in New and Renewable Energy, 2014,2(5):327-333.
[3] Duedu K O, French C E . Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass. Enzyme Microb Technol, 2016,93:113-121.
[4] Ding C, Li M, Hu Y . High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production. Int J Biol Macromol, 2018,117:72-77.
doi: 10.1016/j.ijbiomac.2018.05.128
[5] Dal Rye Kim, Hee Kyung Lim, Kee In Lee , et al. Identification of a novel cellulose-binding domain within the endo-β-1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003. Enzyme and Microbial Technology, 2016,93:166-173.
[6] 沈骥冬 . 木聚糖酶XynAGN16的酶学特性及热盐适应性改性研究. 昆明:云南师范大学, 2016.
Shen J D . Characterization of xylanase XynAGN16 and modification of its thermo-salt adaptation. Kunming: Yunnan Normal University, 2016.
[7] 冯波 . 木聚糖酶产生菌的筛选、发酵条件优化及其酶学性质研究. 长沙:湖南农业大学, 2016.
Fen B . Screening of xylanase producing strains,optimization of fermentation and studies on enzymatic property. Changsha:Hunan Agricultural University, 2016.
[8] 吴芹 . 木聚糖酶温度特性的改善及其在总皂苷提取中的应用. 无锡:江南大学, 2017.
Wu Qin . Improvement in the temperature characteristics of xylanase and its application in the extraction of total saponins. Wuxi: Jiangnan University, 2017.
[9] Sunna A, Antranikian G . xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol, 1997,17(1):39-67.
doi: 10.3109/07388559709146606
[10] 冯波 . 木聚糖酶产生菌的筛选、发酵条件优化及其酶学性质研究. 长沙:湖南农业大学, 2016.
Feng B . Screening of xylanase producing strains,optimization of fermentation and studies on enzymatic property. Changsha:Hunan Agricultural University, 2017.
[11] 范光森 . 樟绒枝霉耐热木聚糖酶的纯化、性质和应用研究. 北京:中国农业大学, 2014.
Fan G S . Purification,characterization, and application of thermostable xylanases from Malbranchea cinnamomea. Beijing:China Agricultural University, 2014.
[12] G. C. P, Choi Y H, Choi Y S , et al. A novel thermostable cellulase free xylanase stable in broad range of pH from Streptomyces sp.CS428. Process Biochemistry, 2013,48(8):1188-1196.
doi: 10.1016/j.procbio.2013.06.007
[13] Amore A, Parameswaran B, Kumar R , et al. Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer’s spent grain saccharification. J Chem Technol Biotechnol, 2015,90(3):573-581.
doi: 10.1002/jctb.2015.90.issue-3
[14] Yousefi-Rad N, Shokrgozar M A, Behdani M , et al. Antigenic assessment of a recombinant human CD90 protein expressed in prokaryotic expression system. Protein Expr Purif, 2015,116:139-143.
doi: 10.1016/j.pep.2015.08.017
[15] Jahangirizadeh Z, Ghafouri H, Sajedi R H , et al. Molecular cloning, prokaryotic expression, purification, structural studies and functional implications of heat shock protein 70 (Hsp70) from Rutilus frisii kutum. Int J Biol Macromol, 2018,108:798-807.
doi: 10.1016/j.ijbiomac.2017.10.174
[16] Theron C W, Labuschagne M, Gudiminchi R , et al. A broad-range yeast expression system reveals arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res, 2014,14(4):556-566.
doi: 10.1111/fyr.2014.14.issue-4
[17] Salcedo-Sora J E, Ward S A, Biagini G A . a yeast expression system for functional and pharmacological studies of the malaria parasite Ca (2)(+)/H (+) antiporter . Malar J, 2012,11:254.
[18] Rozov S M, Permyakova N V, Deineko E V . Main strategies of plant expression system glycoengineering for producing humanized recombinant pharmaceutical proteins. Biochemistry (Mosc), 2018,83(3):215-232.
doi: 10.1134/S0006297918030033
[19] Kotaro K, Makoto T, Takuya K , et al. Cloning of the xynNB gene encoding Xylanase B from Aspergihs niger and its expression in Aspergillus kawachii. Journal of Fermentation and Bioengineering, 1995,75(5):422-428.
[20] Iefuji H, Chino M, Kato M , et al. Acid xylanase from yeast Cryptococcus sp.S-2: purification,characterization,cloning, and sequencing. Biosci Biotechnol Biochem, 1996,60(8):1331-1338.
doi: 10.1271/bbb.60.1331
[21] Beg Q K, Kapoor M, Mahajan L , et al. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 2001,56(3-4):326-338.
doi: 10.1007/s002530100704
[22] 薛业敏, 曹建平, 毛忠贵 , 等. 木聚糖酶基因在大肠杆菌中的表达及表达蛋白的纯化. 无锡轻工大学学报, 2003,3:57-61.
Xue Y M, Cao J P, Mao Z G , et al. Expression of xylanase B gene of Thermotoga maritima in Escherichia coli. Journal of Wuxi University of Light Industry, 2003,3:57-61.
[23] 王磊, 蔡蓓, 高印 , 等. 枯草芽孢杆菌内切葡聚糖酶和木聚糖酶基因在大肠杆菌中的共表达// 中国畜牧兽医学会家禽生态学分会学术研讨会论文集. 2014: 208-216.
Wang L, Cai B, Gao Y , et al. Co-expression of Bacillus subtilis endoglucanase and xylanase genes in Escherichia coli// Symposium of Poultry Ecology Branch of China Animal Husbandry and Veterinary Society. 2014: 208-216.
[24] 刘叔洋 . 包含黏琼脂芽孢杆菌木聚糖酶基因在大肠杆菌中表达研究. 雅安:四川农业大学, 2014.
Liu S Y . Xylanase gene from Bacillus agaradhaerens expression in Escherichia coli. Yaan:Sichuan Agricultural University, 2014.
[25] 何瑶, 殷欣, 吴芹 , 等. 耐热木聚糖酶基因xyn11~(EM)在大肠杆菌中的表达. 食品与生物技术学报, 2016,9:935-940.
He Y, Yin X, Wu Q , et al. Expression of the thermotolerant xylanase gene xyn11EM in Escherichia coli. Journal of Food and Biotechnology, 2016,9:935-940.
[26] 吴迪 . 短小芽孢杆菌NJ-M2来源的木聚糖酶在大肠杆菌中的表面展示及其酶学性质的研究. 武汉:湖北大学, 2016.
Wu D . Surface display and characterization of a xylanase gene from Bacillus pumilus in E. coli expression. Wu Han:Hubei University, 2016.
[27] 郝荣华, 张晓元, 王羽 , 等. 耐热耐碱木聚糖酶在大肠杆菌中的高效分泌表达及酶学性质研究. 食品与药品, 2018,3:168-173.
Hao R H, Zhang X Y, Wang Y , et al. High level expression of recombinant thermo-alkaliphilic xylanase in E. coli and its enzymatic characterization. Food and Drug, 2018,3:168-173.
[28] 刘雨露, 王华广, 杜建辉 , 等. 双功能木聚糖酶Xyn2083的异源表达和酶学性质研究. 食品与发酵工业, 2018,44(10):30-37.
Liu Y L, Wang H G, Du J H , et al. The heterologous expression and characterization of a bifunctional xylanase Xyn2083. Food and Fermentation Industries, 2018,44(10):30-37.
[29] Kunst F, Ogasawara N, Moszer I , et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997,390(6657):249-256.
[30] Dauner M, Sauer U . Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol Bioeng, 2001,76(2):132-143.
doi: 10.1002/(ISSN)1097-0290
[31] Sauer U, Bailey J E . Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum riboflavin yield. Biotechnol Bioeng, 1999,64(6):750-754.
doi: 10.1002/(ISSN)1097-0290
[32] Zamboni N, Mouncey N, Hohmann H P , et al. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab Eng, 2003,5(1):49-55.
doi: 10.1016/S1096-7176(03)00007-7
[33] 曹鹏涛, 杨丽娜, 龚月生 , 等. 应激诱导木聚糖酶基因在枯草芽孢杆菌中表达. 西北农业学报, 2012,( 3):55-58.
Cao P T, Yang L N, Gong Y S , et al. Expression of xylanase gene in Bacillus subtilis induced by stresses. Journal of Northwest Agriculture, 2012,21(3):55-58.
[34] Verma D, Satyanarayana T . Production of cellulase-free xylanase by the recombinant Bacillus subtilis and its applicability in paper pulp bleaching. Biotechnol Prog, 2013,29(6):1441-1447.
doi: 10.1002/btpr.v29.6
[35] Huang X, Li Z, Du C , et al. Improved expression and characterization of a multidomain xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis. J Agric Food Chem, 2015,63(28):6430-6439.
doi: 10.1021/acs.jafc.5b01259
[36] 向亚萍, 罗楚平, 周华飞 , 等. 枯草芽孢杆菌分泌表达极耐热木聚糖酶及其酶学性质. 江苏农业学报, 2016,32(5):1037-1042.
Xiang Y P, Luo C P, Zhou H F , et al. Expression of xylanse B gene of Thermotoga maritima in Bacillus subtilis and the properties of recombinase. Jiangsu Journal of Agricultural Sciences, 2016,32(5):1037-1042.
[37] Daly R, Hearn M T . Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit, 2005,18(2):119-138.
doi: 10.1002/(ISSN)1099-1352
[38] Liu M, Liu G . Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein Expr Purif, 2008,57(2):101-107.
doi: 10.1016/j.pep.2007.10.020
[39] Zhang F, Chen J J, Ren W Z , et al. Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462T. J Ind Microbiol Biotechnol, 2012,39(8):1109-1116.
doi: 10.1007/s10295-012-1119-8
[40] Berrin J G, Williamson G, Puigserver A , et al. High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif, 2000,19(1):179-187.
doi: 10.1006/prep.2000.1229
[41] 韩双艳, 林小琼, 张溪 , 等. 枯草芽孢杆菌B2(Bacillus subtilis B2)木聚糖酶在毕赤酵母中的表达. 现代食品科技, 2009,8:872-876.
Han S Y, Lin X Q, Zhang X , et al. High level expression of Bacillus subtilis B2 xylanase gene in Pichia pastoris.Modern Food Science and Technology, 2009,8:872-876.
[42] 高赫, 单安山 . 黑曲霉木聚糖酶基因XynB在毕赤酵母中的表达和酶学性质的分析// 中国畜牧兽医学会动物营养学分会第七届中国饲料营养学术研讨会论文集. 2014: 106-107.
Gao H, Shan A S . Expression and enzymatic properties of aspergillus niger xylanase gene XynB in Pichia pastoris // The 7th China Feed Nutrition Symposium of Animal Nutrition Society of China Animal Husbandry and Veterinary Association. 2014: 106-107.
[43] 吴金连, 薛勇, 黎海龙 , 等. 东方肉座菌GH10家族木聚糖酶基因的克隆及异源表达. 生物学杂志, 2015,32(5):1-6.
Wu J L, Xue Y, Li H L , et al. Cloning and heterologous expression of a novel GH10 xylanase gene from Hypocrea orientalis EU7-22. Journal of Biology, 2015,32(5):1-6.
[44] 周晨妍, 刘振华, 王丹丹 , 等. 产木聚糖酶毕赤酵母工程菌株构建及表达条件优化研究. 食品工业科技, 2016,37(13):162-167.
Zhou C Y, Liu Z H, Wang D D , et al. Study on the construction and expression of the engineered strain of Pichia pastoris for xylanase production. Science and Technology of Food Industry, 2016,37(13):162-167.
[45] 韩瑞祥 . 来自嗜热子囊菌的耐热重组木聚糖酶在巴斯德毕赤酵母中的异源表达. 合肥:安徽医科大学, 2017.
Han R X . Characterization of hyperthermostable recombinant xylanase from Thermorascus aurantiacus expressed in Pichia pastoris. Hefei: Anhui Medical University, 2017.
[46] Lu Y, Zhong H, Tang Q , et al. Construction and verification of CYP3A5 gene polymorphisms using a Saccharomyces cerevisiae expression system to predict drug metabolism. Mol Med Rep, 2017,15(4):1593-1600.
doi: 10.3892/mmr.2017.6214
[47] Wang H Y, Xiao D F, Zhou C , et al. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity. Appl Microbiol Biotechnol, 2017,101(11):4507-4520.
doi: 10.1007/s00253-017-8209-5
[48] 李海燕, 毛爱军, 何永志 , 等. 黑曲霉糖化酶和木聚糖酶基因在工业用酿酒酵母中的共表达. 菌物学报, 2004,23(4):494-501.
Li H Y, Mao A J, He Y Z , et al. Co-expresion of Glaa and Xynb of Aspergillus niger in industrial yeast. Mycosystema, 2004,23(4):494-501.
[49] Biely P, Hirsch J, la Grange D C , et al. A chromogenic substrate for a beta-xylosidase-coupled assay of alpha-glucuronidase. Anal Biochem, 2000,286(2):289-294.
doi: 10.1006/abio.2000.4810
[50] Nuyens F, van Zyl W H, Iserentant D , et al. Heterologous expression of the Bacillus pumilus endo-beta-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2001,56(3-4):431-434.
doi: 10.1007/s002530100670
[51] 张水龙, 陈东, 曹树威 , 等. 黑曲霉木聚糖酶基因xynB的克隆及在酿酒酵母中的表达. 广西科学, 2013,20(2):148-151.
Zhang S L, Chen D, Cao S W , et al. Cloning of xynB gene encoding xylanase B from Aspergillus niger and expression in Sacharomyces cerevisiae. Guangxi Sciences, 2013,20(2):148-151.
[52] 兰雪, 张斯童, 李哲 , 等. 微滴数字PCR技术在多拷贝木聚糖酶酿酒酵母工程菌筛选中的应用. 食品科学, 2018,39(10):179-184.
Lan X, Zhang S T, Li Z , et al. Application of droplet digital pcr in screening of genetically modified Saccharomyces cerevisiae for multicopy expression of xylanase. Food Science, 2018,39(10):179-184.
[53] Yaver D S, Lamsa M, Munds R , et al. Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol, 2000,29(1):28-37.
doi: 10.1006/fgbi.1999.1179
[54] Mantyla A, Paloheimo M, Hakola S , et al. Production in trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp. Appl Microbiol Biotechnol, 2007,76(2):377-386.
doi: 10.1007/s00253-007-1020-y
[55] 王红霞, 王华明, 张大龙 , 等. 葡萄穗霉木聚糖酶XYA6205在黑曲霉中的表达及酶学特性分析. 生物技术通报, 2013,2:130-134.
Wang H X, Wang H M, Zhang D L , et al. Heterologous expression and characterization of Xylanase XYA6205 from Stachybotrys chartarum. Biotechnology Bulletin, 2013,2:130-134.
[56] Laliberte J F, Nicolas O, Durand S , et al. The xylanase introns from Cryptococcus albidus are accurately spliced in transgenic tobacco plants. Plant Mol Biol, 1992,18(3):447-451.
doi: 10.1007/BF00040660
[57] Komarnytsky S, Borisjuk N V, Borisjuk L G , et al. Production of recombinant proteins in tobacco guttation fluid. Plant Physiol, 2000,124(3):927-934.
doi: 10.1104/pp.124.3.927
[58] Borisjuk N V, Borisjuk L G, Logendra S , et al. Production of recombinant proteins in plant root exudates. Nat Biotechnol, 1999,17(5):466-469.
[59] Hung Y J, Peng C C, Tzen J T , et al. Immobilization of neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity. Bioresour Technol, 2008,99(18):8662-8666.
doi: 10.1016/j.biortech.2008.04.017
[60] Kimura T, Mizutani T, Tanaka T , et al. Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl Microbiol Biotechnol, 2003,62(4):374-379.
doi: 10.1007/s00253-003-1301-z
[61] 黄莹莹 . 外源木聚糖酶基因atx在水稻中的表达及其转基因后代特性研究. 杭州: 浙江大学, 2010.
Huang Y Y . Expression of exogenous xylanase gene atx in rice and study the characteristics of transgenic rice plants. Hangzhou:Zhejiang University, 2010.
[62] 杨培龙 . 来源于橄榄绿链霉菌A1的高比活木聚糖酶在植物中的高效表达. 北京:中国农业科学院, 2005.
Yang P L . Over-expression of xylanase with high specific activity from Streptomyces olivaceoviridis A1 in plants. Beijing:Chinese Academy of Agricultural Sciences, 2005.
[1] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[2] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[3] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[4] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[5] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[6] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[7] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[8] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[9] 李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.
[10] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[11] 吴红丽, 薛勇, 刘健, 甘礼惠, 龙敏南. 乙酰木聚糖酯酶研究进展[J]. 中国生物工程杂志, 2016, 36(3): 102-110.
[12] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.
[13] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[14] 陶文娜, 夏立秋, 丁学知, 唐滢. 刺糖多孢菌中铵载体蛋白基因amtS的克隆及功能研究[J]. 中国生物工程杂志, 2015, 35(2): 25-30.
[15] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.