Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 1-8    DOI: 10.13523/j.cb.2205009
研究报告     
细胞色素P450还原酶与CYP17的共表达及其功能分析*
吴琼,赵昕,杜玉瑶,毛淑红**()
工业发酵微生物教育部重点实验室 天津科技大学生物工程学院 天津 300457
Co-expression and Functional Analysis of Cytochrome P450 Reductase and CYP17
Qiong WU,Xin ZHAO,Yu-yao DU,Shu-hong MAO**()
Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
 全文: PDF(1514 KB)   HTML
摘要:

17α-羟基黄体酮(17α-OH-PROG)是甾体激素类药物的关键中间体,其生物合成主要由细胞色素单加氧酶(CYP17)催化生成。在此过程中,细胞色素 P450还原酶(cytochrome P450 reductase,CPR)作为细胞色素P450 酶电子传递链的重要组成部分,直接影响CYP17的催化效率。为研究不同来源CPR与17α-羟化酶的适配性,首先以人源17α-羟化酶作为研究对象,构建了表达质粒pPIC3.5k-hCYP17,获得了重组毕赤酵母菌株。其次筛选获得3种不同来源CPR,构建了表达质粒 pPICZX-CPR,获得17α-羟化酶与CPR共表达菌株,并在毕赤酵母中进行转化实验,对转化产物进行薄层色谱(TLC)和高效液相色谱(HPLC)分析。结果显示,重组菌株具有17α-羟化酶活性,能够催化黄体酮生成目标产物17α-OH-PROG 以及副产物16α-羟基黄体酮(16α-OH-PROG)。不同来源的CPR与17α-羟化酶共表达与仅表达17α-羟化酶的产率相比均有所提高,其中hCPR-CYP17共表达菌株表现出最高的转化水平,17α-OH-PROG产率提高42%。上述结果表明:17α-羟化酶基因与CPR共表达能够提高其黄体酮17α-羟基化水平。为甾体黄体酮17α-羟基化的生物催化研究提供思路,对甾体药物的工业生产具有重要意义。

关键词: 毕赤酵母黄体酮17α-羟化酶异源表达细胞色素P450还原酶    
Abstract:

17α-hydroxyprogesterone (17α-OH-PROG) is a key intermediate in steroidal hormone drugs, and its biosynthesis is mainly catalyzed by cytochrome monooxygenase (CYP17). In this process, cytochrome P450 reductases (CPRs) are important electron transport chain partners of cytochrome P450 enzymes, which directly affect the catalytic efficiency of CYP17. In order to study the effect of different CPRs on the activity of 17α-hydroxylase, the expression vector pPIC3.5k-hCYP17 was constructed with human 17α-hydroxylase gene, and the recombinant Pichia pastoris strain was obtained. Then, three CPRs from different sources were screened, the expression vector pPICZX-CPR was constructed, and then 17α-hydroxylase and CPR co-expression strains were obtained, and the transformation of progesterone was carried out using the recombinant P.pastoris. Finally, the transformation products were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). The results showed that the successfully recombinant strain showed 17α-hydroxylase activity, which was able to catalyze progesterone to produce the target product 17α-OH-PROG and the by-product 16α-hydroxyprogesterone (16α-OH-PROG). Furthermore, compared with strain containing only 17α-hydroxylase, the yield of 17α-OH-PROG all improved when CPR and 17α-hydroxylase were co-expressed in P.pastoris. Of the three CPRs tested, co-expression of hCPR and CYP17 showed the highest progesterone transformation ability, and the yield of 17α-OH-PROG increased by 42%. The above results indicated that the suitable CPR co-expressed with 17α-hydroxylase resulted in the increase of 17α-OH-PROG production. This study provides a promising strategy for the production of 17α-OH-PROG catalyzed by CYP17, which is of great significance for the industrial production of steroid.

Key words: P.pastoris    Progesterone    CYP17    Heterologous expression    Cytochrome P450 reductase
收稿日期: 2022-05-04 出版日期: 2022-11-04
ZTFLH:  Q814  
基金资助: * 国家重点研发计划(2019YFA0905300);天津市合成生物技术创新能力提升行动(TSBICIP-KJGG-001-09)
通讯作者: 毛淑红     E-mail: shuhongmao@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴琼
赵昕
杜玉瑶
毛淑红

引用本文:

吴琼,赵昕,杜玉瑶,毛淑红. 细胞色素P450还原酶与CYP17的共表达及其功能分析*[J]. 中国生物工程杂志, 2022, 42(10): 1-8.

Qiong WU,Xin ZHAO,Yu-yao DU,Shu-hong MAO. Co-expression and Functional Analysis of Cytochrome P450 Reductase and CYP17. China Biotechnology, 2022, 42(10): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2205009        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/1

图1  pPIC3.5k-hCYP17质粒示意图及其PCR验证结果
图2  毕赤酵母重组菌基因组PCR验证结果
图3  毕赤酵母重组菌发酵TLC及HPLC分析
Strains Product EV/% hCYP17/% A105L/%
P.pastoris 16α-OH-P4 0 11.0 10.3
17α-OH-P4 0 28.5 34.45
表1  毕赤酵母重组菌表达水平
图4  毕赤酵母重组质粒CPR基因PCR验证结果
图5  毕赤酵母重组菌CPR基因与CYP基因 PCR验证
菌株 17α-OH-P4 /% 16α-OH-P4 /%
EV 0 0
WT 28.50 11.20
hCYP17-hCPR 40.44 10.39
hCYP17-ScCPR 34.67 11.00
hCYP17-ratCPR 34.60 11.60
A105L 34.45 10.30
A105L-hCPR 35.60 10.30
A105L-ScCPR 36.24 2.50
A105L-ratCPR 30.00 7.90
表2  CPR毕赤酵母重组菌对黄体酮的转化率
[1] 姚韧辉. 甾体类药物的研究现状与进展. 科技风, 2016(18): 260-261.
Yao R H. Research status and progress of steroids. Technology Trend, 2016(18): 260-261.
[2] 金俊, 卢梦瑶, 厉秋岳, 等. 以甾醇为底物微生物法合成甾体类化合物的研究进展. 食品研究与开发, 2018, 39(10): 205-209.
Jin J, Lu M Y, Li Q Y, et al. Microbial synthesis of sterol-based steroidal compounds: a review. Food Research and Development, 2018, 39(10): 205-209.
[3] 张金碧, 周偲睿, 徐慰倬, 等. 甾体衍生物羟基化的生物转化研究进展. 沈阳药科大学学报, 2020, 37(1): 57-61.
Zhang J B, Zhou S R, Xu W Z, et al. Research progress in synthesis of hydroxylated steroid derivatives by biotransformation. Journal of Shenyang Pharmaceutical University, 2020, 37(1): 57-61.
[4] 潘高峰, 贺一君, 系祖斌. 17α-羟基黄体酮的合成. 广东化工, 2013, 40(10): 43-44.
Pan G F, He Y J, Xi Z B. Synthesis of 17α-hydroxyprogesterone. Guangdong Chemical Industry, 2013, 40(10): 43-44.
[5] Arlt W, Martens J W M, Song M, et al. Molecular evolution of adrenarche: structural and functional analysis of p450c17 from four primate species. Endocrinology, 2002, 143(12): 4665-4672.
pmid: 12446594
[6] Richardson T H, Hsu M H, Kronbach T, et al. Purification and characterization of recombinant-expressed cytochrome P450 2C3 from Escherichia coli: 2C3 encodes the 6 beta-hydroxylase deficient form of P450 3b. Archives of Biochemistry and Biophysics, 1993, 300(1): 510-516.
pmid: 8380971
[7] Barnes H J, Jenkins C M, Waterman M R. Baculovirus expression of bovine cytochrome P450C17 in Sf9 cells and comparison with expression in yeast, mammalian-cells, and E. coli. Archives of Biochemistry and Biophysics, 1994, 315(2): 489-494.
pmid: 7986097
[8] Sigle R O, Titus M A, Harada N, et al. Baculovirus mediated high level expression of human placental aromatase (CYP19A1). Biochemical and Biophysical Research Communications, 1994, 201(2): 694-700.
pmid: 8003004
[9] Barnes H J, Arlotto M P, Waterman M R. Expression and enzymatic activity of recombinant cytochrome P 450 17 alpha-hydroxylase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(13): 5597-5601.
[10] Fisher C W, Shet M S, Caudle D L, et al. High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P 450 reductase flavoprotein. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(22): 10817-10821.
[11] Sagara Y, Barnes H J, Waterman M R. Expression in Escherichia coli of functional cytochrome P450c17 lacking its hydrophobic amino-terminal signal anchor. Archives of Biochemistry and Biophysics, 1993, 304(1): 272-278.
pmid: 8323292
[12] Estabrook R W, Mason J I, Simpson E R, et al. The heterologous expression of the cytochromes P450: a new approach for the study of enzyme activities and regulation. Advances in Enzyme Regulation, 1991, 31: 365-383.
pmid: 1877395
[13] Swart A C, Storbeck K H, Swart P. A single amino acid residue, Ala 105, confers 16α-hydroxylase activity to human cytochrome P450 17α-hydroxylase/17, 20 lyase. The Journal of Steroid Biochemistry and Molecular Biology, 2010, 119(3-5): 112-120.
doi: 10.1016/j.jsbmb.2009.12.014
[14] Dhir V, Reisch N, Bleicken C M, et al. Steroid 17α-hydroxylase deficiency: functional characterization of four mutations (A174E, V178D, R440C, L465P) in the CYP17A1 gene. The Journal of Clinical Endocrinology & Metabolism, 2009, 94(8): 3058-3064.
doi: 10.1210/jc.2009-0172
[15] Lee-Robichaud P, Akhtar M E, Wright J N, et al. The cationic charges on Arg347, Arg358 and Arg 449 of human cytochrome P450c17 (CYP17) are essential for the enzyme’s cytochrome b5-dependent acyl-carbon cleavage activities. The Journal of Steroid Biochemistry and Molecular Biology, 2004, 92(3): 119-130.
doi: 10.1016/j.jsbmb.2004.07.005
[16] Gupta M K, Geller D H, Auchus R J. Pitfalls in characterizing P450c17 mutations associated with isolated 17, 20-lyase deficiency. The Journal of Clinical Endocrinology and Metabolism, 2001, 86(9): 4416-4423.
doi: 10.1210/jcem.86.9.7812
[17] Sakaki T, Kominami S, Hayashi K, et al. Molecular engineering study on electron transfer from NADPH-P 450 reductase to rat mitochondrial P450c27 in yeast microsomes. Journal of Biological Chemistry, 1996, 271(42): 26209-26213.
doi: 10.1074/jbc.271.42.26209 pmid: 8824269
[18] Chang J J, Thia C, Lin H Y, et al. Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresource Technology, 2015, 184: 2-8.
doi: 10.1016/j.biortech.2014.11.097
[19] Ding M Z, Yan H F, Li L F, et al. Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One, 2014, 9(10): e109348.
[20] Sarria S, Wong B, García Martín H, et al. Microbial synthesis of pinene. ACS Synthetic Biology, 2014, 3(7): 466-475.
doi: 10.1021/sb4001382 pmid: 24679043
[21] Xie W P, Lv X M, Ye L D, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015, 30: 69-78.
doi: 10.1016/j.ymben.2015.04.009
[22] Shkumatov V M, Rudaia E V, et al. Range of substrates and steroid bioconversion reactions performed by recombinant microorganisms Saccharomyces cerevisiae and Yarrowia lipolytica expressing cytochrome P450c17. Prikladnaia Biokhimiia i Mikrobiologiia, 2006, 42(5): 539-546.
[23] Imai T, Globerman H, Gertner J M, et al. Expression and purification of functional human 17 alpha-hydroxylase/17, 20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17 alpha-hydroxylase/17, 20-lyase deficiency. Journal of Biological Chemistry, 1993, 268(26): 19681-19689.
pmid: 8396144
[24] Boyle S M, Popp M P, Smith W C, et al. Expression of CYP2L 1 in the yeast Pichia pastoris, and determination of catalytic activity with progesterone and testosterone. Marine Environmental Research, 1998, 46(1-5): 25-28.
doi: 10.1016/S0141-1136(97)00102-5
[25] Geier M, Braun A, Fladischer P, et al. Double site saturation mutagenesis of the human cytochrome P 450 2D6 results in regioselective steroid hydroxylation. The FEBS Journal, 2013, 280(13): 3094-3108.
doi: 10.1111/febs.12270
[26] Wang R J, Sui P C, Hou X J, et al. Cloning and identification of a novel steroid 11α-hydroxylase gene from Absidia coerulea. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 171: 254-261.
doi: 10.1016/j.jsbmb.2017.04.006
[27] Lu W, Feng J H, Chen X, et al. Distinct regioselectivity of fungal P 450 enzymes for steroidal hydroxylation. Applied and Environmental Microbiology, 2019, 85(18): e01182-e01119.
[28] Neunzig I, Widjaja M, Peters F T, et al. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Applied Biochemistry and Biotechnology, 2013, 170(7): 1751-1766.
doi: 10.1007/s12010-013-0303-2 pmid: 23737303
[29] Lin H L, Kenaan C, Zhang H M, et al. Reaction of human cytochrome P450 3A4 with peroxynitrite: nitrotyrosine formation on the proximal side impairs its interaction with NADPH-cytochrome P450 reductase. Chemical Research in Toxicology, 2012, 25(12): 2642-2653.
doi: 10.1021/tx3002753
[30] Hlavica P, Schulze J, Lewis D F V. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. Journal of Inorganic Biochemistry, 2003, 96(2-3): 279-297.
pmid: 12888264
[1] 于璐,胡暄,张小鹃,牛安娜,张晓鹏. 功能性新型冠状病毒RBD结构域在毕赤酵母表面的展示*[J]. 中国生物工程杂志, 2022, 42(6): 30-38.
[2] 李丁,李兰,安允飞,毕振威,于晓明,陈瑾,郑其升. 联合策略优化犬α干扰素的酵母表达*[J]. 中国生物工程杂志, 2022, 42(1/2): 88-95.
[3] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[4] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[5] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[6] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[7] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[8] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[9] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[10] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[11] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[12] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[13] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[14] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[15] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.