Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (9): 52-61    DOI: 10.13523/j.cb.2003027
综述     
真菌芳香聚酮化合物的合成生物学研究进展*
饶海密,梁冬梅,李伟国,乔建军,财音青格乐()
天津大学化工学院 系统生物工程教育部重点实验室 天津 301700
Advances in Synthetic Biology of Fungal Aromatic Polyketides
RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le()
Key Laboratory of Systems Bioengineering,Ministry of Education, School of Chemical Engineering,Tianjin University, Tianjin 301700,China
 全文: PDF(1577 KB)   HTML
摘要:

真菌芳香聚酮化合物是由真菌非还原聚酮合酶(NR-PKSs)催化形成的具有广泛生物活性的一类天然产物。大部分内源真菌菌株存在难培养、致病性或产率低等问题,从根本上限制了真菌芳香聚酮化合物的开发和应用。随着合成生物学和代谢工程的发展,很多具有生物活性的聚酮产物实现了在工业微生物(如酿酒酵母、构巢曲霉等)中的异源生产,相关研究逐渐成为热点。从合成途径解析与挖掘、底盘细胞的构建与改造等方面综述了近年来真菌芳香聚酮化合物的合成生物学研究进展,为未来真菌芳香聚酮化合物人工代谢途径的高效构建和实现工业化生产奠定基础。

关键词: 真菌芳香聚酮NR-PKSs生物合成途径合成生物学异源表达    
Abstract:

Fungal aromatic polyketides are a class of natural products with a wide range of bio-activite,which catalyzed by fungal non-reducing polyketide synthase (NR-PKSs).Some aromatic polyketide producting strains have problems such as difficulty in cultivation, pathogenicity, or low yield, which fundamentally limit the development and application of fungal aromatic polyketides.With the development of synthetic biology and metabolic engineering, more and more polyketides with biological activity have realized the heterogeneous production of industrial microorganisms(such as Saccharomyces cerevisiae and Aspergillus nidulans,etc.), and related research have gradually become hot spots. The research progress of the synthetic biology of fungal aromatic polyketides in recent years is reviewed from the analysis and mining of biosynthetic pathways, the construction and optimization of chassis cells, etc., which lays the foundation for the efficient synthesis of artificial metabolic pathways of aromatic polyketides and industrial production in the future.

Key words: Fungal aromatic polyketides    NR-PKSs    Biosynthetic pathways    Synthetic biology    Heterologous expression
收稿日期: 2020-03-09 出版日期: 2020-10-12
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2017YFD0201400)
通讯作者: 财音青格乐     E-mail: qinggele@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
饶海密
梁冬梅
李伟国
乔建军
财音青格乐

引用本文:

饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.

RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides. China Biotechnology, 2020, 40(9): 52-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2003027        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I9/52

表1  真菌芳香聚酮化合物的生物合成进展
[1] Bovio E, Garzoli L, Poli A, et al. Marine fungi from the sponge Grantia compressa: biodiversity, chemodiversity, and biotechnological potential. Marine Drugs, 2019,17(4):220-242.
[2] O'Hagan D. The polyketide metabolites. Comparative Biochemistry and Physiology Part A: Physiology, 1992,103(3):613-617.
[3] Cox R J& Simpson T J. Fungal type I polyketide synthases. Methods Enzymol, 2009,459:49-78.
pmid: 19362635
[4] Cox R J. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their genes. Org Biomol Chem, 2007,5(13):2010-2026.
doi: 10.1039/b704420h pmid: 17581644
[5] Crawford J M, Thomas P M, Scheerer J R, et al. Deconstruction of iterative multidomain polyketide synthase function. Science, 2008,320(5873):243-246.
pmid: 18403714
[6] Watanabe A, Fujii I, Sankawa U, et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Letters, 1999,40(1):91-94.
[7] Rude M A, Khosla C. Engineered biosynthesis of polyketides in heterologous hosts. Chemical Engineering Science, 2004,59(22-23):4693-4701.
[8] Kealey J T, Liu L, Santi D V, et al. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proceedings of the National Academy of Sciences, 1998,95(2):505-509.
[9] Wattanachaisaereekul S, Lantz A E, Nielsen M L, et al. Optimization of heterologous production of the polyketide 6-MSA in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2007,97(4):893-900.
[10] Korman T P, Crawford J M, Labonte J W, et al. Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis. Proc Natl Acad Sci USA, 2010,107(14):6246-6251.
doi: 10.1073/pnas.0913531107 pmid: 20332208
[11] Crawford J M, Vagstad A L, Whitworth K P, et al. Synthetic strategy of nonreducing iterative polyketide synthases and the origin of the classical "starter- unit effect". Chembiochem, 2008,9(7):1019-1023.
[12] Girol C G, Fisch K M, Heinekamp T, et al. Regio-and stereoselective oxidative phenol coupling in Aspergillus niger. Angewandte Chemie International Edition, 2012,51(39):9788-9791.
pmid: 22945023
[13] Fujii I, Watanabe A, Sankawa U, et al. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry & Biology, 2001,8(2):189-197.
[14] Studt L, Wiemann P, Kleigrewe K, et al. Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Applied and Environmental Microbiology, 2012,78(12):4468-4480.
pmid: 22492438
[15] Awakawa T, Kaji T, Wakimoto T, et al. A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca. Bioorganic & Medicinal Chemistry Letters, 2012,22(13):4338-4340.
pmid: 22633689
[16] Chiang Y M, Szewczyk E, Davidson A D, et al. Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol, 2010,76(7):2067-2074.
pmid: 20139316
[17] Li Y, Xu W& Tang Y. Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains. Journal of Biological Chemistry, 2010,285(30):22764-22773.
[18] Chooi Y H, Cacho R, Tang Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chemistry & Biology, 2010,17(5):483-494.
pmid: 20534346
[19] Li Y, Chooi Y H, Sheng Y, et al. Comparative characterization of fungal anthracenone and naphthacenedione biosynthetic pathways reveals an α-hydroxylation-hependent Claisen-like cyclization catalyzed by a dimanganese thioesterase. Journal of the American Chemical Society, 2011,133(39):15773-15785.
pmid: 21866960
[20] Szewczyk E, Chiang Y M, Oakley C E, et al. Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Applied and Environmental Microbiology, 2008,74(24):7607-7612.
pmid: 18978088
[21] Nielsen M T, Nielsen J B, Anyaogu D C, et al. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS ONE, 2013,8(8):e72871-e72880.
pmid: 24009710
[22] Xu X Y, Liu L, Zhang F, et al. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. Chem Bio Chem, 2013,15(2):284-292.
pmid: 24302702
[23] Throckmorton K, Lim F Y, Kontoyiannis D P, et al. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environmental Microbiology, 2016,18(1):246-259.
[24] Cacho R A, Chooi Y H, Zhou H, et al. Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chemical Biology, 2013,8(10):2322-2330.
pmid: 23978092
[25] Bok J W, Keller N P. 2 Insight into fungal secondary metabolism from ten years of LaeA research// Biochemistry and Molecular Biology. New York: Springer International Publishing, 2016: 21-29.
[26] Bouhired S, Weber M, Kempf-Sontag A, et al. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptio- nal regulator LaeA. Fungal Genetics and Biology, 2007,44(11):1134-1145.
doi: 10.1016/j.fgb.2006.12.010 pmid: 17291795
[27] Sakai K, Kinoshita H, Shimizu T, et al. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. Journal of Bioscience & Bioengineering, 2008,106(5):466-472.
doi: 10.1263/jbb.106.466 pmid: 19111642
[28] Yeh H H, Ahuja M, Chiang Y M, et al. Resistance gene-guided genome mining: serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. ACS Chemical Biology, 2016,11(8):2275-2284.
pmid: 27294372
[29] Valiante V, Macheleidt J, F? ge M, et al. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Frontiers in Microbiology, 2015,6:325-336.
[30] Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 2011,48(1):62-69.
pmid: 20659575
[31] Elena C, Ravasi P, Castelli M E, et al. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Frontiers in Microbiology, 2014,5:21-29.
doi: 10.3389/fmicb.2014.00021 pmid: 24550894
[32] Williams R B, Henrikson J C, Hoover A R, et al. Epigenetic remodeling of the fungal secondary metabolome. Organic & Biomolecular Chemistry, 2008,6(11):1895-1897.
doi: 10.1039/b804701d pmid: 18480899
[33] Bond C, Tang Y, Li L. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases. Fungal Genetics and Biology, 2016,89:52-61.
doi: 10.1016/j.fgb.2016.01.005 pmid: 26850128
[34] Kindinger F, Nies J, Becker A, et al. Genomic locus of a Penicillium crustosum pigment as integration site for secondary metabolite gene expression. ACS Chemical Biology, 2019,14(6):1227-1234.
pmid: 31141338
[35] Ma S M, Zhan J, Watanabe K, et al. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. Journal of the American Chemical Society, 2007,129(35):10642-10643.
pmid: 17696354
[36] Wiemann P, Willmann A, Straeten M, et al. Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Molecular Microbiology, 2009,72(4):931-946.
[37] Arndt B, Studt L, Wiemann P, et al. Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genetics and Biology, 2015,84:26-36.
pmid: 26382642
[38] Bradshaw R E, Jin H, Morgan B S, et al. A polyketide synthase gene required for biosynthesis of the aflatoxin-like toxin, dothistromin. Mycopathologia, 2006,161(5):283-294.
doi: 10.1007/s11046-006-0240-5 pmid: 16649078
[39] Awakawa T, Yokota K, Funa N, et al. Physically discrete β-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. Chemistry & Biology, 2009,16(6):613-623.
[40] Sanchez J F, Entwistle R, Hung J H, et al. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. Journal of the American Chemical Society, 2011,133(11):4010-4017.
doi: 10.1021/ja1096682 pmid: 21351751
[41] Chooi Y H, Fang J, Liu H, et al. Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. Organic Letters, 2013,15(4):780-783.
doi: 10.1021/ol303435y pmid: 23368997
[42] Mattern D J, Schoeler H, Weber J, et al. Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2015,99(23):10151-10161.
[43] Lim F Y, Hou Y, Chen Y, et al. Genome-based cluster deletion reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus. Applied & Environmental Microbiology, 2012,78(12):4117-4125.
pmid: 22492455
[44] Griffiths S, Mesarich C H, Saccomanno B, et al. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization. Proceedings of the National Academy of Sciences, 2016,113(25):6851-6856.
[45] Neubauer L, Dopstadt J, Humpf H U, et al. Identification and characterization of the ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea. Fungal Biology and Biotechnology, 2016,3(1):2-15.
[46] Palonen E K, Raina S, Brandt A, et al. Melanisation of Aspergillus terreus:is butyrolactone I involved in the regulation of both DOPA and DHN types of pigments in submerged culture. Microorganisms, 2017,5(2):6878-6881.
[47] Franco M E, Lopez S, Medina R, et al. Draft genome sequence and gene annotation of Stemphylium lycopersici strain CIDEFI-216. Genome Announce- ments, 2015,3(5):e01069-15.
[48] Szwalbe A J, Williams K, Song Z, et al. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chemical Science, 2019,10(1):233-238.
pmid: 30746079
[49] Greco C, De Mattos-Shipley K, Bailey A M, et al. Structure revision of cryptosporioptides and determination of the genetic basis for dimeric xanthone biosynthesis in fungi. Chemical Science, 2019,10(10):2930-2939.
pmid: 30996871
[50] Weber C, Farwick A, Benisch F, et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Applied Microbiology and Biotechnology, 2010,87(4):1303-1315.
doi: 10.1007/s00253-010-2707-z pmid: 20535464
[51] Jones E W. Tackling the protease problem in Saccharomyces cerevisiae. Methods in Enzymology, 1991,194(194):428.
[52] Kealey J T. Creating polyketide diversity through genetic engineering. Frontiers in Bioscience, 2003,8(3):c1-13.
[53] He Y, Wang B, Chen W, et al. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnology Advances, 2018,36(3):739-783.
doi: 10.1016/j.biotechadv.2018.02.001 pmid: 29421302
[54] Chiang Y M, Oakley C E, Ahuia M, et al. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. Journal of the American Chemical Society, 2013,135(20):7720-7731.
doi: 10.1021/ja401945a pmid: 23621425
[55] Watanabe A. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiology Letters, 2000,192(1):39-44.
doi: 10.1111/j.1574-6968.2000.tb09356.x pmid: 11040426
[56] Yin W B, Chooi Y H, Smith A R, et al. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth Biol, 2013,2(11):629-634.
doi: 10.1021/sb400048b pmid: 23758576
[57] Lee K K M, Silva N A D, Kealey J T. Determination of the extent of phosphopantetheinylation of polyketide synthases expressed in Escherichia coli and Saccharomyces cerevisiae. Analytical Biochemistry, 2009,394(1):75-80.
[58] Ehmann D E, Gehring A M, Walsh C T. Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of alpha-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry, 1999,38(19):6171-6177.
doi: 10.1021/bi9829940 pmid: 10320345
[59] Palmer J M, Keller N P. Secondary metabolism in fungi: does chromosomal location matter. Current Opinion in Microbiology, 2010,13(4):431-436.
pmid: 20627806
[60] Ching C G. Sequential cloned gene integration: enhancements in Saccharomyces cerevisiae, extension to polypoid yeast strains, and appli -cation to polyketide production. California: University of California Irvine, 2005.
[61] Leber C, Da Silva N A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnology & Bioengineering, 2014,111(2):347-358.
doi: 10.1002/bit.25021 pmid: 23928901
[62] Choi J W, Da Silva N A. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. Journal of Biotechnology, 2014,187:56-59.
doi: 10.1016/j.jbiotec.2014.07.430 pmid: 25078432
[63] Wattanachaisaereekul S, Lantz A E, Nielsen M L, et al. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metabolic Engineering, 2008,10(5):246-254.
pmid: 18555717
[64] Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A- derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio, 2014,5(3):e01130-14.
doi: 10.1128/mBio.01130-14 pmid: 24803522
[65] Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level prod- uction of isoprenoids. Metabolic Engineering, 2007,9(2):160-168.
doi: 10.1016/j.ymben.2006.10.005 pmid: 17196416
[66] Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013,15:48-54.
pmid: 23164578
[67] Lian J, Si T, Nari N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering, 2014,24:139-149.
doi: 10.1016/j.ymben.2014.05.010 pmid: 24853351
[68] Cardenas J, Da Silva, N A. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metabolic Engineering, 2014,25:194-203.
doi: 10.1016/j.ymben.2014.07.008 pmid: 25084369
[69] Chen Y, Bao J, Kim I K, et al. Coupled incremental precursor and co- factor supply improves 3-hydroxypropionic acid production in Saccharomyce cerevisiae. Metabolic Engineering, 2014,22:104-109.
doi: 10.1016/j.ymben.2014.01.005 pmid: 24502850
[70] Beck J, Ripka S, Siegner A, et al. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum: its gene structure relative to that of other polyketide synthases. FEBS Journal, 1990,192(2):487-498.
[71] Fujii T, Yamaoka H, Gomi K, et al. Cloning and nucleotide sequence of the ribonuclease T1 gene (rntA) from Aspergillus oryzae and its expression in Saccharomyces cerevisiae and Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 1995,59(10):1869-1874.
[72] Fujii I, Ono Y, Tada H, et al. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol Gen Genet, 1996,253(1):1-10.
[73] Hitschler J, Boles E. De novo production of aromatic m-cresol in Saccharomyces cerevisiae mediated by heterologous polyketide synthases combined with a 6-methylsalicylic acid decarboxylase. Metabolic Engineering Communicatio-ns, 2019,9:e00093.
[74] Rugbjerg P, Naesby M, Mortensen U H, et al. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microbial Cell Factories, 2013,12(1):31-39.
[75] Sun L, Liu G, Li Y, et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin. Metabolic Engineering, 2019,54:212-221.
pmid: 31028901
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[7] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[8] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[9] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[13] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.