Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (5): 22-29    DOI: 10.13523/j.cb.1911035
研究报告     
Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*
位薇,常保根,王英,路福平(),刘夫锋()
工业发酵微生物教育部重点实验室 天津市工业微生物重点实验室 工业酶国家工程实验室天津科技大学生物工程学院 天津 300457
Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378
WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping(),LIU Fu-feng()
Key Laboratory of the Ministry of Education of Industrial Fermentation Microorganisms, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory of Industrial Enzymes, School of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
 全文: PDF(1135 KB)   HTML
摘要:

Tau是一种微管相关蛋白,其生理功能是与微管蛋白结合促进其聚合形成微管并维持微管的稳定。由于Tau蛋白异常聚集沉淀而导致的疾病被称为Tau蛋白病,其中阿尔茨海默病是最常见的一种类型。全序列Tau含有441个氨基酸残基,其中306~378肽段(Tau306-378)为驱动其聚集的核心区域。Tau306-378包含R3和R4微管结合序列以及从R4序列C端向后延伸的10个氨基酸残基。首先利用pET22b载体在大肠杆菌中表达获得了Tau306-378,然后用镍亲和层析进行纯化,终产量约为10.35mg/L。利用SDS-PAGE、Western blot和基质辅助激光解析电离飞行时间质谱依次对Tau306-378进行了鉴定。其中SDS-PAGE和基质辅助激光解析电离飞行时间质谱的研究结果表明,表达的Tau306-378主要以单体形式存在,但同时含有部分二聚体。最后,硫黄素T荧光染色实验显示该重组蛋白具有良好的聚集特性,可用于体外Tau蛋白的聚集特性、毒性及相关抑制剂开发的研究。

关键词: 阿尔茨海默病Tau异源表达纯化聚集特性    
Abstract:

Tau is one of the microtubule-associated proteins. Its physiological function is to promote microtubule assembly and maintain microtubule stability. The phosphorylated Tau easily aggregated and subsequently caused a series of tauopathies. Of them, Alzheimer's disease is a common type of tauopathies. Six subtypes of Tau are also found in human brain because of different mRNA splicing of the same gene. They are respectively composed of 352, 381, 383, 410, 412 and 441 residues. The molecular weight of the six subtypes is among 48-67kDa, the R1, R2, R3 and R4 are the microtubule binding domains, which can bind to microtubule and maintain microtubule stability. Compared with the full-length Tau, the truncated Tau isoforms, such as R1-R4, are more likely to aggregate and have stronger aggregation kinetics. For example, the microtubule binding domain of R3 and R4 and the following 10 amino acid at the C-terminal of R4 sequence are the core peptide of the paired helical fibrils (PHFs), which has been proven to drive Tau aggregation. And its fibrillary 3D structure was also identified using micro-electron diffraction of Cryo-electron microscope. Herein, the core fragment 306-378 (Tau306-378) of Tau was heterogeneously expressed in Escherichia coli, and the purified Tau306-378 was obtained by Ni+ chelated affinity chromatography. The final production yield was about 10.35mg/L. Then, the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot proved that Tau306-378 was expressed successfully. Moreover, the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was further used to confirm the molecular weight of Tau306-378. It was proved that most of the Tau306-378 were in the form of monomers. In addition, a small portion of dimers were also found in the protein sample, which is caused by the formation of disulfide bond among two monomers. In order to explorethe effect of induction temperature on the production of the target protein, four different induction temperatures (16℃, 25℃, 30℃ and 37℃) were investigated. The results showed that the expression of Tau306-378 was the highest at 30℃, followed by 25℃ and 16℃. However, the expression of Tau306-378 was the lowest at 37℃. The optimal inducing condition of Tau306-378 were identified: inducing at 30℃ for 16-20h with 0.5mmol/L of isopropyl-β-D-thiogalactopyranoside. Finally, thioflavin T fluorescence staining experiments were performed to probe its fibrillogenesis. The results of thioflavin T fluorescence experiments showed that the trend of aggregation dynamics presents a typical S-shaped curve. That is, the recombinant Tau306-378 has good aggregation characteristics, which could be used to study the aggregation characteristics and toxicity of Tau in vitro, as well as in the screening of various inhibitors against Tau fibrillogenesis.

Key words: Alzheimer's disease    Tau    Heterologous expression    Purification    Aggregation characteristics
收稿日期: 2019-11-20 出版日期: 2020-06-02
ZTFLH:  Q816  
基金资助: * 国家重点研发专项(2018YFA0901700);国家自然科学基金(21878234);天津市自然科学基金(18JCZDJC33000)
通讯作者: 路福平,刘夫锋     E-mail: fplu302@mail.tust.edu.cn;fufengliu@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
位薇
常保根
王英
路福平
刘夫锋

引用本文:

位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.

WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378. China Biotechnology, 2020, 40(5): 22-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1911035        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I5/22

图1  人类全长Tau蛋白基本结构域及所含氨基酸残基的示意图
Sequence type Sequence (5'-3')
Amino acids VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTF
Gene CATATGGTGCAGATTGTGTATAAGCCGGTGGACCTGAGCAAAGTGACCAGCAAATGCGGCAGCCTGGGCAATATTCATCA
CAAACCGGGTGGTGGCCAGGTGGAAGTGAAAAGCGAGAAGCTGGACTTTAAGGATCGCGTGCAGAGCAAGATCGGCAGC
CTGGATAACATTACCCATGTGCCGGGCGGCGGCAATAAGAAAATTGAAACCCACAAACTGACCTTC
表1  Tau306-378氨基酸序列和基因序列
图2  Tau306-378表达与纯化流程图
Primer name Primer sequence (5'-3')
Nde I-Tau306-378-F GGAATTCCATATGGTGCAGATTGTGTATAAGCC
Xho I-Tau306-378-R CCGCTCGAGTCAATGGTGATGATGGTGGT
表2  Tau306-378 PCR所用引物
图3  重组表达载体pET22b-Tau306-378的构建
图4  Tau306-378蛋白的异源表达
图5  Tau306-378蛋白表达条件的优化及纯化
图6  Tau306-378蛋白的鉴定和聚集动力学检测
[1] Fitzpatrick A, Falcon B, He S , et al. Cryo-EM structures of Tau filaments from Alzheimer's disease brain. Nature, 2017,547(7662):185-190.
[2] Hardy J . Alzheimer's disease: the amyloid cascade hypothesis: an update and reappraisal. Journal of Alzheimers Disease, 2006,9(S3):151-153.
[3] Rossor M N . Molecular pathology of Alzheimer's disease. Journal of Neurology Neurosurgery and Psychiatry, 1993,56(6):583-586.
[4] Yankner B A, Duffy L K, Kirschner D A . Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science, 1990,250(4978):279-282.
[5] Wang Y, Mandelkow E . Tau in physiology and pathology. Nature Reviews Neuroscience, 2016,17(1):5-21.
[6] Liu F F, Dong X Y, He L Z , et al. Molecular insight into conformational transition of amyloid beta-peptide 42 inhibited by (-)-epigallocatechin-3-gallate probed by molecular simulations. Journal of Physical Chemistry B, 2011,115(41):11879-11887.
[7] Kametani F, Hasegawa M . Reconsideration of amyloid hypothesis and Tau hypothesis in Alzheimer's disease. Frontiers in Neuroscience, 2018,12(25):1-11.
[8] Brier M R, Gordon B, Friedrichsen K , et al. Tau and abeta imaging, CSF measures, and cognition in Alzheimer's disease. Science Translational Medicine, 2016,8(338):338ra366.
[9] Shammas S L, Garcia G A, Kumar S , et al. A mechanistic model of Tau amyloid aggregation based on direct observation of oligomers. Nature Communications, 2015,6(1):1-10.
[10] Mandelkow E M, Mandelkow E . Tau protein and Alzheimer's disease. Neurobiology of Aging, 1994,15(1):85-86.
[11] Rademakers R, Cruts M, van Broeckhoven C . The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Human Mutation, 2010,24(4):277-295.
[12] Verwilst P, Kim H S, Kim S , et al. Shedding light on Tau protein aggregation: the progress in developing highly selective fluorophores. Chemical Society Reviews, 2018,47(7):2249-2265.
[13] Seidler P M, Boyer D R, Rodriguez J A , et al. Structure-based inhibitors of Tau aggregation. Nature Chemistry, 2018,10(2):170-176.
[14] Bratus S, Pak I . Structure, microtubule interactions, and paired helical filament aggregation by Tau mutants of frontotemporal dementias. Biochemistry, 2000,39(38):11714-11721.
doi: 10.1021/bi000850r
[15] Hasegawa M, Smith M J, Goedert M . Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. Febs Letters, 1998,437(3):207-210.
[16] Karikari T K, Turner A, Stass R , et al. Expression and purification of Tau protein and its frontotemporal dementia variants using a cleavable histidine tag. Protein Expression and Purification, 2016,130:44-54.
[17] Michel C H, Kumar S, Pinotsi D , et al. Extracellular monomeric Tau protein is sufficient to initiate the spread of Tau protein pathology. Journal of Biological Chemistry, 2013,289(2):956-967.
doi: 10.1074/jbc.M113.515445
[18] Yao T M, Tomoo K, Ishida T , et al. Aggregation analysis of the microtubule binding domain in Tau protein by spectroscopic methods. Journal of Biochemistry, 2003,134(1):91-99.
[19] Barghorn S, Davies P, Mandelkow E . Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on β-structure in the core domain. Biochemistry, 2004,43(6):1694-1703.
[20] Jia L G, Wang W J, Shang J Z , et al. Highly efficient soluble expression, purification and characterization of recombinant Aβ42 from Escherichia coli. Rsc Advances, 2018,8(33):18434-18441.
[21] Du W J, Guo J J, Gao M T , et al. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Scientific Reports, 2015,5(1):1-10.
[22] Jia L G, Wang W J, Sang J C , et al. Amyloidogenicity and cytotoxicity of a recombinant C-terminal His-Tagged Aβ. Acs Chemical Neuroscience, 2019,10(3):1251-1262.
[23] Li S, Liu F F, Yu L L , et al. Dual effect of thioflavin T on the nucleation kinetics of amyloid β-protein 40. Acta Physico-Chemica Sinica, 2016,32(6):1391-1396.
[24] Kundel F, De S, Flagmeier P , et al. Hsp70 inhibits the nucleation and elongation of Tau and sequesters Tau aggregates with high affinity. Acs Chemical Biology, 2018,13(3):636-646.
[1] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[2] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[3] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[4] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[5] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[6] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[7] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.
[8] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[9] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[10] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[11] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[12] 景佳美,徐欣,王敏,彭如超,施一. 沙粒病毒聚合酶C端的表达纯化与结晶条件筛选 *[J]. 中国生物工程杂志, 2019, 39(12): 18-23.
[13] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[14] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[15] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.