Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 79-90    DOI: 10.13523/j.cb.2207014
综述     
香豆素类化合物功能及生物合成研究进展*
王荣香1,2,宋佳2,孙博2,闫雪3,张万忠1,**(),赵晨2,**()
1 沈阳化工大学制药与生物工程学院 沈阳 110142
2 国家粮食和物资储备局科学研究院 粮食储运国家工程研究中心 北京 100037
3 新希望六和股份有限公司 畜禽饲料与畜禽产品质量安全控制四川省重点实验室 成都 610023
Research Progress of Function and Biosynthesis of Coumarins
WANG Rong-xiang1,2,SONG Jia2,SUN Bo2,YAN Xue3,ZHANG Wan-zhong1,**(),ZHAO Chen2,**()
1 College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
3 Key Laboratory of Quality Control for Feed and Products of Livestock and Poultry of Sichuan Province, New Hope Liuhe Limited Company, Chengdu 610023, China
 全文: PDF(1377 KB)   HTML
摘要:

香豆素类化合物是自然界中一类重要的化合物,具有抗肿瘤、抗凝血、抗菌、杀虫等多种生物活性,应用领域广泛。目前大多数香豆素类化合物从植物中提取,受环境因素影响较大,得率低、成本高,不利于大规模生产,从而限制了其应用和推广。利用合成生物学的思路合成香豆素类化合物具有无污染、原料易得、成本低、过程可控等优势。对香豆素类化合物生物合成途径的研究,尤其是靶标天然产物生物合成表达元件、宿主和发酵条件的优化,以及合成途径中关键酶的挖掘,已经成为研究热点。综述香豆素类化合物及其衍生物的结构、功能和生物合成研究进展,为其生物合成路径中的基因挖掘及异源表达提供参考。

关键词: 香豆素类化合物生物合成生物活性异源表达    
Abstract:

Coumarins are important compounds in nature. They show a wide range of applications, due to their multiple bio-activities such as antitumor, anticoagulation, antibacterial, and insecticidal. At present, most of these compounds are obtained through plant extraction, which is greatly affected by environmental factors, resulting in low yield and high cost, and therefore is not conducive to large-scale production and hinders their application. Instead, the biosynthesis process is controllable. It becomes a research hotspot to develop industrialized production technology of target natural products through optimization of the biosynthetic expression elements, host and fermentation conditions. However, mining of key enzymes in the biosynthetic pathway is still a difficult task in this research field. In this paper, the structure, function and biosynthesis of some coumarins and their derivatives are reviewed, which provides a reference for gene mining and heterologous expression of the synthetic pathways of these compounds.

Key words: Coumarin compounds    Biosynthesis    Bio-activity    Heterologous expression
收稿日期: 2022-07-08 出版日期: 2023-01-05
ZTFLH:  Q819  
基金资助: *中央级公益性科研院所基本科研业务费专项资助项目(JY2102);中央级公益性科研院所基本科研业务费专项资助项目(ZX2004)
通讯作者: 张万忠,赵晨     E-mail: lzwz2004@sina.com;zc@ags.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王荣香
宋佳
孙博
闫雪
张万忠
赵晨

引用本文:

王荣香,宋佳,孙博,闫雪,张万忠,赵晨. 香豆素类化合物功能及生物合成研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 79-90.

WANG Rong-xiang,SONG Jia,SUN Bo,YAN Xue,ZHANG Wan-zhong,ZHAO Chen. Research Progress of Function and Biosynthesis of Coumarins. China Biotechnology, 2022, 42(12): 79-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207014        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/79

图1  香豆素类化合物的类型及代表化合物
名称 结构 主要功能 参考文献
欧前胡素(imperatorin) 抗炎、抗菌、抗病毒、抗癌、逆转癌细胞耐药性、治疗心血管及神经系统疾病,等 [5]
东莨菪素(scopoletin) 抗癌、抗炎、镇痛、降血压、降血脂,等 [6]
花椒毒素(zanthoxylin) 抗氧化,等 [7]
蛇床子素(osthol) 抗炎止痛、抗菌止痒、抗氧化和神经保护,等 [8]
异补骨脂素(angelicin) 抗糖尿病、抗癌、抗病毒,等 [9]
佛手柑内酯(bergamot lactone) 抗肿瘤、调节血糖、改善失眠、防治骨质疏松、抗衰老、抗炎、抗过敏,等 [10]
七叶内酯(esculetin) 抗肿瘤、抗乙型肝炎病毒 [11]
艾芦司他(irosustat) 抗肿瘤(已进入临床试验阶段) [12]
7-羟基香豆素(7-hydroxycoumarin) 荧光化合物、防晒剂、抑菌 [13]
香豆素A9(coumarin A9) 抗横纹病毒 [14]
补骨脂定(psoralidin) 抗骨质疏松 [15]
华法林(warfarin) 香豆素类口服抗凝药 [16]
4-羟基香豆素(4-hydroxycoumarin) 亲电和亲核性质,抗凝血、抗菌、抗病毒、抗肿瘤,等 [17]
表1  常见香豆素类化合物及其衍生物的结构与功能
图2  香豆素类化合物生物合成途径
图3  莽草酸途径
[1] 聂凯强, 申霖. 香豆素类化合物的合成方法及发展概述. 有机化学研究, 2018, 6(1): 9-18.
doi: 10.12677/JOCR.2018.61002
Nie K Q, Shen L. Synthesis and development of coumarin compounds. Journal of Organic Chemistry Research, 2018, 6(1): 9-18.
doi: 10.12677/JOCR.2018.61002
[2] Qin H L, Zhang Z W, Ravindar L, et al. Antibacterial activities with the structure-activity relationship of coumarin derivatives. European Journal of Medicinal Chemistry, 2020, 207: 112832.
doi: 10.1016/j.ejmech.2020.112832
[3] Ren Q C, Gao C, Xu Z, et al. Bis-coumarin derivatives and their biological activities. Current Topics in Medicinal Chemistry, 2018, 18(2): 101-113.
doi: 10.2174/1568026618666180221114515
[4] Brennan M A, Cookson B T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Molecular Microbiology, 2000, 38(1): 31-40.
pmid: 11029688
[5] 李晓强, 谭余庆, 李慧杰, 等. 欧前胡素药理作用及机制研究进展. 中国实验方剂学杂志, 2020, 26(18): 196-201.
Li X Q, Tan Y Q, Li H J, et al. Research progress on pharmacological effect and mechanism of imperatorin. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(18): 196-201.
[6] 魏丽娟, 周金培, 戴岳. 天然产物东莨菪素的研究进展. 海峡药学, 2009, 21(4): 10-13.
Wei L J, Zhou J P, Dai Y. Progress in the study of natural product scopoletin. Strait Pharmaceutical Journal, 2009, 21(4): 10-13.
[7] Shu P H, Li J P, Fei Y Y, et al. Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. Journal of Natural Medicines, 2020, 74(2): 456-462.
doi: 10.1007/s11418-019-01375-8
[8] 都梦帆, 向汝, 范妤, 等. 蛇床子素的药理作用及抗炎活性机制研究进展. 云南中医学院学报, 2020, 43(6): 92-98.
Du M F, Xiang R, Fan Y, et al. A review on the anti-inflammatory effects and mechanisms of osthole. Journal of Yunnan University of Traditional Chinese Medicine, 2020, 43(6): 92-98.
[9] Lee T H, Chen Y C, Hwang T L, et al. New coumarins and anti-inflammatory constituents from the fruits of Cnidium monnieri. International Journal of Molecular Sciences, 2014, 15(6): 9566-9578.
doi: 10.3390/ijms15069566
[10] 谢术欢, 冯玛莉. 佛手柑内酯药理作用研究进展. 海南医学院学报, 2021. DOI: 10.13210/j.cnki.jhmu.20210507.003.
doi: 10.13210/j.cnki.jhmu.20210507.003
Xie S H, Feng M L. Advances in pharmacological action of bergamot lactone. Journal of Hainan Medical College, 2021. DOI: 10.13210/j.cnki.jhmu.20210507.003.
doi: 10.13210/j.cnki.jhmu.20210507.003
[11] 叶蓁, 罗琴, 李善斌, 等. 七叶内酯衍生物的合成及其生物活性. 广东化工, 2020, 47(24): 13-15.
Ye Z, Luo Q, Li S B, et al. Synthesis and biological activities of esculetin derivatives. Guangdong Chemical Industry, 2020, 47(24): 13-15.
[12] Palmieri C, Januszewski A, Stanway S, et al. Irosustat: a first-generation steroid sulfatase inhibitor in breast cancer. Expert Review of Anticancer Therapy, 2011, 11(2): 179-183.
doi: 10.1586/era.10.201 pmid: 21342037
[13] 张国财, 安吉缘, 徐震霆, 等. 7-羟基香豆素的抑菌活性及其稳定性研究. 西南林业大学学报(自然科学), 2022, 42(2): 77-82.
Zhang G C, An J Y, Xu Z T, et al. Study on the antifungal activity and stability of 7-hydroxycoumarin. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(2): 77-82.
[14] Hu Y, Shan L P, Qiu T X, et al. Synthesis and biological evaluation of novel coumarin derivatives in rhabdoviral clearance. European Journal of Medicinal Chemistry, 2021, 223: 113739.
doi: 10.1016/j.ejmech.2021.113739
[15] Zhai Y K, Li Y Y, Wang Y P, et al. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. European Journal of Pharmacology, 2017, 801: 62-71.
doi: S0014-2999(17)30152-8 pmid: 28283388
[16] Lei L, Xue Y B, Liu Z, et al. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Scientific Reports, 2015, 5: 13544.
doi: 10.1038/srep13544
[17] 权彦, 李小蓉, 刘靖丽. 4-羟基香豆素衍生物的微波合成、表征及抗凝血研究. 中国新药杂志, 2018, 27(8): 921-926.
Quan Y, Li X R, Liu J L. Microwave synthesis, characterization and anticoagulant study of novel 4-hydroxy coumarin derivatives. Chinese Journal of New Drugs, 2018, 27(8): 921-926.
[18] Konkol'ová E, Hudáčová M, Hamul'aková S, et al. Tacrine-coumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines. Molecules (Basel, Switzerland), 2021, 26(4): 1133.
[19] 黄思思, 周芊芊, 罗婷, 等. 香豆素类化合物抗肿瘤机制的研究进展. 上海医药, 2022, 43(1): 70-74.
Huang S S, Zhou Q Q, Luo T, et al. Research progress in anti-cancer mechanism of coumarins. Shanghai Medical & Pharmaceutical Journal, 2022, 43(1): 70-74.
[20] Sokol I, Toma M, Krnić M, et al. Transition metal-catalyzed synthesis of new 3-substituted coumarin derivatives as antibacterial and cytostatic agents. Future Medicinal Chemistry, 2021, 13(21): 1865-1884.
[21] Shan L P, Zhou Y, Yan M C, et al. A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture. Virus Research, 2021, 297: 198387.
doi: 10.1016/j.virusres.2021.198387
[22] Li W B, Qiao X P, Wang Z X, et al. Synthesis and antioxidant activity of conjugates of hydroxytyrosol and coumarin. Bioorganic Chemistry, 2020, 105: 104427.
doi: 10.1016/j.bioorg.2020.104427
[23] Zhang J X, Lv J H, Zhao L Q, et al. Coumarin-pi, a new antioxidant coumarin derivative from Paxillus involutus. Natural Product Research, 2020, 34(9): 1246-1249.
doi: 10.1080/14786419.2018.1557170
[24] Ming L G, Zhou J, Cheng G Z, et al. Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology, 2011, 88(1-2): 33-43.
doi: 10.1159/000328776
[25] 刘佳. 呋喃香豆素类化合物的合成及其抑菌活性、荧光特性的研究. 南京: 南京农业大学, 2016.
Liu J. The synthesis, antifungal activity and fluorescent property of furanocoumarin derivatives. Nanjing: Nanjing Agricultural University, 2016.
[26] 陈力, 阿布力孜·达吾提, 周乐. 植物源杀虫剂蛇床子素防治帕米尔高原地区草原蝗虫效果初报. 草食家畜, 2021(2): 55-58.
Chen L, Dawuti A, Zhou L. Preliminary evaluation on the efficacy of osthol for controlling grasshoppers in Pamir plateau. Grass-Feeding Livestock, 2021(2): 55-58.
[27] Hazleton L W, Murer H K, Thiessen R Jr, et al. Toxicity of coumarin. The Journal of Pharmacology and Experimental Therapeutics, 1956, 118(3): 348-358.
[28] 孔令雷, 胡金凤, 陈乃宏. 香豆素类化合物药理和毒理作用的研究进展. 中国药理学通报, 2012, 28(2): 165-168.
Kong L L, Hu J F, Chen N H. Advances in pharmacology and toxicology of coumarins. Chinese Pharmacological Bulletin, 2012, 28(2): 165-168.
[29] 梅家齐, 杨得坡. 呋喃香豆素光化学毒性及其脱敏柑橘精油的研制. 香料香精化妆品, 2010(5): 55-58.
Mei J Q, Yang D P. Phototoxicity of furanocoumarins and preparation of furanocoumarin free citrus oil. Flavour Fragrance Cosmetics, 2010(5): 55-58.
[30] Qi S J, Li Q, Liu W M, et al. Coumarin/Fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 204: 590-597.
doi: 10.1016/j.saa.2018.06.095
[31] Zhao Y C, Jian X Y, Wu J L, et al. Elucidation of the biosynthesis pathway and heterologous construction of a sustainable route for producing umbelliferone. Journal of Biological Engineering, 2019, 13: 44.
doi: 10.1186/s13036-019-0174-3 pmid: 31139252
[32] Bruni R, Barreca D, Protti M, et al. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules (Basel, Switzerland), 2019, 24(11): 2163.
doi: 10.3390/molecules24112163
[33] Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochemistry Reviews, 2006, 5(2-3): 293-308.
doi: 10.1007/s11101-006-9040-2
[34] 江舟. 植物香豆素生物合成途径及关键酶基因的研究现状. 现代园艺, 2022, 45(12): 189-191.
Jiang Z. Research status of coumarin biosynthesis pathway and key enzyme genes in plants. Contemporary Horticulture, 2022, 45(12): 189-191.
[35] Zhang F, Ren J, Zhan J X. Identification and characterization of an efficient phenylalanine ammonia-lyase from Photorhabdus luminescens. Applied Biochemistry and Biotechnology, 2021, 193(4): 1099-1115.
doi: 10.1007/s12010-020-03477-6 pmid: 33411135
[36] Wang Z W, Jian X Y, Zhao Y C, et al. Functional characterization of cinnamate 4-hydroxylase from Helianthus annuus Linn using a fusion protein method. Gene, 2020, 758: 144950.
doi: 10.1016/j.gene.2020.144950
[37] Kai K, Mizutani M, Kawamura N, et al. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. The Plant Journal, 2008, 55(6): 989-999.
doi: 10.1111/j.1365-313X.2008.03568.x
[38] Duan Z, Yan Q, Wu F, et al. Genome-wide analysis of the UDP-glycosyltransferase family reveals its roles in coumarin biosynthesis and abiotic stress in Melilotus albus. International Journal of Molecular Sciences, 2021, 22(19): 10826.
doi: 10.3390/ijms221910826
[39] Xu X P, Yan Y R, Huang W Q, et al. Molecular cloning and biochemical characterization of a new coumarin glycosyltransferase CtUGT 1 from Cistanche tubulosa. Fitoterapia, 2021, 153: 104995.
doi: 10.1016/j.fitote.2021.104995
[40] Vanholme R, Sundin L, Seetso K C, et al. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nature Plants, 2019, 5(10): 1066-1075.
doi: 10.1038/s41477-019-0510-0 pmid: 31501530
[41] Villard C, Munakata R, Kitajima S, et al. A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. New Phytologist, 2021, 231(5): 1923-1939.
doi: 10.1111/nph.17458
[42] Jian X Y, Zhao Y C, Wang Z W, et al. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn. Plant Molecular Biology, 2020, 104(3): 327-337.
doi: 10.1007/s11103-020-01045-4
[43] 吴涛, 赵津津, 毛贤军. 大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统改造对产L-色氨酸的影响. 生物工程学报, 2017, 33(11): 1877-1882.
Wu T, Zhao J J, Mao X J. Effect of PTS modifications on L-tryptophan production in Escherichia coli. Chinese Journal of Biotechnology, 2017, 33(11): 1877-1882.
[44] 张培, 侯云龙, 苏敏, 等. 当归咖啡酸-O-甲基转移酶基因的克隆与表达分析. 中国野生植物资源, 2021, 40(1): 20-28.
Zhang P, Hou Y L, Su M, et al. Cloning and expression analysis of caffeic acid-O-methyltransferase gene in Angelica sinensis. Chinese Wild Plant Resources, 2021, 40(1): 20-28.
[45] Bu X L, He B B, Weng J Y, et al. Constructing microbial hosts for the production of benzoheterocyclic derivatives. ACS Synthetic Biology, 2020, 9(9): 2282-2290.
doi: 10.1021/acssynbio.9b00405
[46] 赵晨晖. 设计构建酿酒酵母转化木质素生产香豆素类化合物. 天津: 天津大学, 2020.
Zhao C H. Engineering Saccharomyces cerevisiae for the production of coumarins from lignin. Tianjin: Tianjin University, 2020.
[47] Vannelli T, Wei W Q, Sweigard J, et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabolic Engineering, 2007, 9(2): 142-151.
doi: 10.1016/j.ymben.2006.11.001 pmid: 17204442
[48] 陈鑫洁, 钱芷兰, 刘启, 等. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸. 中国生物工程杂志, 2021, 41(10): 52-61.
Chen X J, Qian Z L, Liu Q, et al. Modification of aromatic amino acid synthetic pathway in Pichia pastoris to produce cinnamic acid and ρ-coumaric acid. China Biotechnology, 2021, 41(10): 52-61.
[49] Liu Q L, Yu T, Li X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10(1): 4976.
doi: 10.1038/s41467-019-12961-5 pmid: 31672987
[50] 张思琪, 周景文, 张国强, 等. 产对香豆酸酿酒酵母工程菌株的构建与优化. 生物工程学报, 2020, 36(9): 1838-1848.
doi: 10.13345/j.cjb.200003 pmid: 33164460
Zhang S Q, Zhou J W, Zhang G Q, et al. Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2020, 36(9): 1838-1848.
doi: 10.13345/j.cjb.200003 pmid: 33164460
[51] Zeng F X, Lu T, Wang J, et al. Design, synthesis and bioactivity evaluation of coumarin-BMT hybrids as new acetylcholinesterase inhibitors. Molecules (Basel, Switzerland), 2022, 27(7): 2142.
doi: 10.3390/molecules27072142
[52] Jin Y, Ding Y H, Dong J J, et al. Design, synthesis and agricultural evaluation of derivatives of N-Acyl-N-(m-fluoro-benzyl)-6-amino-coumarin. Natural Product Research, 2022, 36(3): 798-804.
doi: 10.1080/14786419.2020.1806268
[53] 张发光, 曲戈, 孙周通, 等. 从化学合成到生物合成——天然产物全合成新趋势. 合成生物学, 2021, 2(5): 674-696.
doi: 10.12211/2096-8280.2021-039
Zhang F G, Qu G, Sun Z T, et al. From chemical synthesis to biosynthesis: trends toward total synthesis of natural products. Synthetic Biology Journal, 2021, 2(5): 674-696.
doi: 10.12211/2096-8280.2021-039
[1] 卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.
[2] 李婷, 刘冰, 林杉, 夏兴兴, 赵萍, 李沛, 冯佩瑶, 张学桐, 付云娜, 闫德慧. 羊肚菌多糖提取分离及生物活性研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 117-125.
[3] 吴琼,赵昕,杜玉瑶,毛淑红. 细胞色素P450还原酶与CYP17的共表达及其功能分析*[J]. 中国生物工程杂志, 2022, 42(10): 1-8.
[4] 赵炳杰,郭岩彬. 食用菌多糖的提取纯化及生物活性研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 146-159.
[5] 李然,闫晓光,李伟国,梁冬梅,财音青格乐,乔建军. 高效合成倍半萜酿酒酵母的构建策略*[J]. 中国生物工程杂志, 2022, 42(1/2): 14-25.
[6] 戢传富,王璐,苟敏,宋文枫,夏子渊,汤岳琴. 黄原胶生物合成及分子调控*[J]. 中国生物工程杂志, 2022, 42(1/2): 46-57.
[7] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[8] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[9] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[10] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[11] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[12] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[13] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[14] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[15] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.