Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 93-104    DOI: 10.13523/j.cb.2207035
综述     
里氏木霉中纤维素酶的合成诱导及调控*
刘相致1,程驰1,2,**(),赵悦1,汪超俊2,张颖2,薛闯1,2,**()
1.大连理工大学生物工程学院 大连市合成生物学应用转化工程技术研究中心 大连 116024
2.大连理工大学宁波研究院 宁波 315016
Induction and Regulation of Cellulase Synthesis in Trichoderma reesei
Xiang-zhi LIU1,Chi CHENG1,2,**(),Yue ZHAO1,Chao-jun WANG2,Ying ZHANG2,Chuang XUE1,2,**()
1. School of Bioengineering, Dalian University of Technology, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian 116024, China
2. Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
 全文: PDF(1332 KB)   HTML
摘要:

随着绿色化学的兴起,天然纤维素原料转化和利用的研究受到了高度重视和广泛应用。利用纤维素酶降解纤维素为燃料乙醇、生物柴油的生产铺设了道路。但纤维素酶的生产成本较高,限制了纤维素酶产业化应用。里氏木霉生产的纤维素酶组分丰富,是纤维素酶高产菌株,深入研究里氏木霉的纤维素酶诱导及表达调控机制,有助于提高其纤维素酶产率。近年来人们对里氏木霉的纤维素酶诱导过程和调控机制有了一定研究进展,综述了里氏木霉纤维素酶诱导和基因表达调控,首先介绍了纤维素、纤维二糖、槐糖、乳糖等几种诱导物及诱导物的转运蛋白,进一步综述了几种转录因子的调控作用,同时介绍了染色体调控、信号通路和光条件对纤维素酶诱导的影响。最后展望了未来里氏木霉纤维素酶诱导表达的研究方向,包括探明诱导物的本质及其具体过程、揭示转录因子之间的联系及转录调控网络、寻找信号转导关键功能蛋白及研究环境因素对纤维素酶的诱导作用等。

关键词: 纤维素酶里氏木霉基因表达调控转录因子    
Abstract:

With the rise of green chemistry, research on the transformation and utilization of natural cellulose raw materials has been highly valued and widely applied. Cellulose degradation by cellulase has paved the way for fuel ethanol and biodiesel production. However, the high production cost of cellulase limits its industrial application. Trichoderma reesei is a cellulase-producing strain and produces abundant cellulase components. Comprehensive studies on the mechanism of cellulase induction and expression regulation of Trichoderma reesei are helpful to improve its cellulase production. In recent years great progress has been made on the induction process and regulation mechanism of cellulase production by Trichoderma reesei. This review summarizes recent progresses of the regulation of cellulase induction and gene expression by Trichoderma reesei, by first introducing the inducers (cellulose, cellobiose, sophorose, lactose, etc.) and their transporters, then summarizing the regulation function of several transcription factors, and moreover, the effects of chromosomal regulation, signaling pathway, and illumination conditions on cellulase induction are also introduced. Finally, the future research directions of cellulase induction in Trichoderma reesei was discussed, including exploring the nature and specific process of inducers, revealing the relationship between transcription factors and transcriptional regulatory network, searching for key functional proteins of signal transduction, and studying the effect of environmental factors on cellulase induction.

Key words: Cellulase    Trichoderma reesei    Gene expression regulation    Transcription factor
收稿日期: 2022-07-18 出版日期: 2022-11-04
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2021YFC2102500);国家重点研发计划(2021YFC2101303);国家重点研发计划(2018YFB1501703);国家自然科学基金(21878035);国家自然科学基金(21808026);大连市杰出青年科技人才支持计划(2021RJ03)
通讯作者: 程驰,薛闯     E-mail: cheng.chi@dlut.edu.cn;xue.1@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘相致
程驰
赵悦
汪超俊
张颖
薛闯

引用本文:

刘相致,程驰,赵悦,汪超俊,张颖,薛闯. 里氏木霉中纤维素酶的合成诱导及调控*[J]. 中国生物工程杂志, 2022, 42(10): 93-104.

Xiang-zhi LIU,Chi CHENG,Yue ZHAO,Chao-jun WANG,Ying ZHANG,Chuang XUE. Induction and Regulation of Cellulase Synthesis in Trichoderma reesei. China Biotechnology, 2022, 42(10): 93-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207035        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/93

图1  里氏木霉纤维素酶合成诱导及调控示意图
转录因子 作用对象 结合位点 引用
XYR1 cbh1等纤维素酶基因 GGC(A/T)3 [31]
ACE2 cbh1等纤维素酶基因、半纤维素酶基因xyn2 GGCTAATAA [40]
ACE3 cbh1crt1xyr1 CGGAN(T/A)3 [42]
ACE4 ACE3 两个相邻的-GGCC- [43]
VIB1 纤维素酶基因 [58]
CRZ1 cbh1xyr1 (T/G)GGCG或GGGC(G/T) [59]
LAE1 xyr1 [60]
AZF1 cel7acel45aswo1 [61]
CLP1 xyr1 [62]
GRD1 纤维素酶表达 [63]
CRE1 纤维素酶、转录因子、转运蛋白基因 [50]
CRE2 CRE1 [52]
CRE3 CRE1 [53]
CRE4 CRE1 [53]
ACE1 cbh1xyr1 AGGCA [33]
RCE1 cbh1 GGC(A/T)3 [64]
CTF1 cre1,抑制纤维素酶基因 [65]
表1  里氏木霉中的转录因子及其功能
[1] Trivedi N, Reddy C R K, Lali A M. Marine microbes as a potential source of cellulolytic enzymes. Advances in Food and Nutrition Research, 2016, 79: 27-41.
doi: S1043-4526(16)30035-3 pmid: 27770862
[2] Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 1999, 15(5): 804-816.
pmid: 10514250
[3] Cherry J R, Fidantsef A L. Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 2003, 14(4): 438-443.
pmid: 12943855
[4] Ilmén M, Saloheimo A, Onnela M L, et al. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, 1997, 63(4): 1298-1306.
doi: 10.1128/aem.63.4.1298-1306.1997 pmid: 9097427
[5] Carle-Urioste J C, Escobar-Vera J, El-Gogary S, et al. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. Journal of Biological Chemistry, 1997, 272(15): 10169-10174.
doi: 10.1074/jbc.272.15.10169 pmid: 9092563
[6] Kubicek C P, Muhlbauer G, Klotz M, et al. Properties of a conidial-bound cellulase enzyme system from Trichoderma reesei. Microbiology, 1988, 134(5): 1215-1222.
doi: 10.1099/00221287-134-5-1215
[7] Sternberg D, Mandels G R. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. Journal of Bacteriology, 1979, 139(3): 761-769.
doi: 10.1128/jb.139.3.761-769.1979 pmid: 39061
[8] Vaheri M, Leisola M, Kauppinen V. Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnology Letters, 1979, 1(1): 41-46.
doi: 10.1007/BF01395789
[9] Seiboth B, Herold S, Kubicek C P. Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. Sub-Cellular Biochemistry, 2012, 64: 367-390.
[10] Häkkinen M, Arvas M, Oja M, et al. re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microbial Cell Factories, 2012, 11: 134.
doi: 10.1186/1475-2859-11-134 pmid: 23035824
[11] Pang A P, Wang H Y, Luo Y S, et al. Dissecting cellular function and distribution of β-glucosidases in Trichoderma reesei. mBio, 2021, 12(3): e03671-e03620.
[12] Zhou Q X, Xu J T, Kou Y B, et al. Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryotic Cell, 2012, 11(11): 1371-1381.
doi: 10.1128/EC.00170-12
[13] Shida Y, Yamaguchi K, Nitta M, et al. The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnology for Biofuels, 2015, 8: 230.
doi: 10.1186/s13068-015-0420-y
[14] Fowler T, Brown R D Jr. The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Molecular Microbiology, 1992, 6(21): 3225-3235.
pmid: 1453960
[15] Mach R L, Seiboth B, Myasnikov A, et al. The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology, 1995, 16(4): 687-697.
pmid: 7476163
[16] Zou G, Jiang Y P, Liu R, et al. The putative β-glucosidase BGL3I regulates cellulase induction in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11: 314.
doi: 10.1186/s13068-018-1314-6
[17] Li C C, Lin F M, Li Y Z, et al. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microbial Cell Factories, 2016, 15: 151.
doi: 10.1186/s12934-016-0550-3
[18] Bischof R H, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 2016, 15(1): 106.
doi: 10.1186/s12934-016-0507-6 pmid: 27287427
[19] Karaffa L, Coulier L, Fekete E, et al. The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Applied Microbiology and Biotechnology, 2013, 97(12): 5447-5456.
doi: 10.1007/s00253-012-4667-y
[20] Ivanova C, Bååth J A, Seiboth B, et al. Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One, 2013, 8(5): e62631.
doi: 10.1371/journal.pone.0062631
[21] Xu J T, Zhao G L, Kou Y B, et al. Intracellular β-glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryotic Cell, 2014, 13(8): 1001-1013.
doi: 10.1128/EC.00100-14
[22] Seiboth B, Hartl L, Salovuori N, et al. Role of the bga1-encoded extracellular{beta}-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Applied and Environmental Microbiology, 2005, 71(2): 851-857.
doi: 10.1128/AEM.71.2.851-857.2005
[23] Fekete E, Seiboth B, Kubicek C P, et al. Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei):a key to cellulase gene expression on lactose. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(20): 7141-7146.
[24] Hartl L, Kubicek C P, Seiboth B. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. Journal of Biological Chemistry, 2007, 282(25): 18654-18659.
doi: 10.1074/jbc.M700955200
[25] Zhang W X, Kou Y B, Xu J T, et al. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. Journal of Biological Chemistry, 2013, 288(46): 32861-32872.
doi: 10.1074/jbc.M113.505826
[26] de Oliveira Porciuncula J, Furukawa T, Shida Y, et al. Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Bioscience, Biotechnology, and Biochemistry, 2013, 77(5): 1014-1022.
doi: 10.1271/bbb.120992
[27] Havukainen S, Valkonen M, Koivuranta K, et al. Studies on sugar transporter CRT 1 reveal new characteristics that are critical for cellulase induction in Trichoderma reesei. Biotechnology for Biofuels, 2020, 13: 158.
doi: 10.1186/s13068-020-01797-7 pmid: 32944074
[28] Nogueira K M V, de Paula R G, Antoniêto A C C, et al. Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11: 84.
doi: 10.1186/s13068-018-1084-1
[29] Sloothaak J, Tamayo-Ramos J A, Odoni D I, et al. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnology for Biofuels, 2016, 9: 148.
doi: 10.1186/s13068-016-0564-4 pmid: 27446237
[30] de Paula R G, Antoniêto A C C, Ribeiro L F C, et al. New genomic approaches to enhance biomass degradation by the industrial fungus Trichoderma reesei. International Journal of Genomics, 2018, 2018: 1974151.
[31] Derntl C, Gudynaite-Savitch L, Calixte S, et al. Mutation of the xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnology for Biofuels, 2013, 6(1): 62.
doi: 10.1186/1754-6834-6-62
[32] dos Santos Castro L, de Paula R G, Antoniêto A C C, et al. Understanding the role of the master regulator XYR1 in Trichoderma reesei by global transcriptional analysis. Frontiers in Microbiology, 2016, 7: 175.
[33] 辛琪, 徐金涛, 汪天虹, 等. 丝状真菌红褐肉座菌(Hypocrea jecorina)纤维素酶基因的转录调控研究进展. 微生物学报, 2010, 50(11): 1431-1437.
pmid: 21268886
Xin Q, Xu J T, Wang T H, et al. Transcriptional regulation of cellulases and hemicellulases gene in Hypocrea jecorina: a review. Acta Microbiologica Sinica, 2010, 50(11): 1431-1437.
pmid: 21268886
[34] Stricker A R, Steiger M G, Mach R L. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Letters, 2007, 581(21): 3915-3920.
pmid: 17662982
[35] Portnoy T, Margeot A, Seidl-Seiboth V, et al. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE 1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryotic Cell, 2011, 10(2): 262-271.
doi: 10.1128/EC.00208-10 pmid: 21169417
[36] Lichius A, Seidl-Seiboth V, Seiboth B, et al. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Molecular Microbiology, 2014, 94(5): 1162-1178.
doi: 10.1111/mmi.12824
[37] Schmoll M, Kubicek C P. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus: a review. Acta Microbiologica et Immunologica Hungarica, 2003, 50(2-3): 125-145.
pmid: 12894484
[38] Stricker A R, Trefflinger P, Aro N, et al. Role of Ace2 (activator of cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genetics and Biology, 2008, 45(4): 436-445.
pmid: 17920314
[39] Wang L, Lv X X, Cao Y L, et al. A novel transcriptional regulator RXE 1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Applied Microbiology and Biotechnology, 2019, 103(11): 4511-4523.
doi: 10.1007/s00253-019-09739-6 pmid: 30982107
[40] Aro N, Saloheimo A, Ilmén M, et al. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. Journal of Biological Chemistry, 2001, 276(26): 24309-24314.
doi: 10.1074/jbc.M003624200 pmid: 11304525
[41] Martinez D, Berka R M, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 2008, 26(5): 553-560.
doi: 10.1038/nbt1403 pmid: 18454138
[42] Häkkinen M, Valkonen M J, Westerholm-Parvinen A, et al. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnology for Biofuels, 2014, 7(1): 14.
doi: 10.1186/1754-6834-7-14 pmid: 24472375
[43] Chen Y M, Lin A B, Liu P, et al. Trichoderma reesei ACE4, a novel transcriptional activator involved in the regulation of cellulase genes during growth on cellulose. Applied and Environmental Microbiology, 2021, 87(15): e0059321.
[44] Zhang J J, Chen Y M, Wu C, et al. The transcription factor ACE 3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. Journal of Biological Chemistry, 2019, 294(48): 18435-18450.
doi: 10.1074/jbc.RA119.008497
[45] Portnoy T, Margeot A, Linke R T, et al. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics, 2011, 12: 269.
doi: 10.1186/1471-2164-12-269 pmid: 21619626
[46] Sun J P, Glass N L. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One, 2011, 6(9): e25654.
doi: 10.1371/journal.pone.0025654
[47] Antoniêto A C C, dos Santos Castro L, Silva-Rocha R, et al. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Fungal Genetics and Biology, 2014, 73: 93-103.
doi: 10.1016/j.fgb.2014.10.009 pmid: 25459535
[48] Antoniêto A C C, de Paula R G, Castro L, et al. Trichoderma reesei CRE1-mediated carbon catabolite repression in response to sophorose through RNA sequencing analysis. Current Genomics, 2016, 17(2): 119-131.
doi: 10.2174/1389202917666151116212901 pmid: 27226768
[49] 陈小玲, 陈东, 张穗生, 等. 瑞氏木霉碳源阻遏相关基因Cre1的分子改造. 基因组学与应用生物学, 2014, 33(2): 288-292.
Chen X L, Chen D, Zhang S S, et al. Molecular modification of Cre1 gene mediating carbon catabolite repression in Trichoderma reesei. Genomics and Applied Biology, 2014, 33(2): 288-292.
[50] Kubicek C P, Mikus M, Schuster A, et al. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2009, 2: 19.
doi: 10.1186/1754-6834-2-19
[51] Seidl V, Gamauf C, Druzhinina I S, et al. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics, 2008, 9: 327.
doi: 10.1186/1471-2164-9-327
[52] Denton J A, Kelly J M. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity. BMC Biotechnology, 2011, 11: 103.
doi: 10.1186/1472-6750-11-103 pmid: 22070776
[53] 刘雯莉. cre4基因在里氏木霉中对纤维素酶表达的调控研究. 深圳: 深圳大学, 2016.
Liu W L. Studies on regulation of cre4 gene on cellulase expression in Trichoderma reesei. Shenzhen: Shenzhen University, 2016.
[54] Aro N, Ilmén M, Saloheimo A, et al. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Applied and Environmental Microbiology, 2003, 69(1): 56-65.
doi: 10.1128/AEM.69.1.56-65.2003
[55] 何敏超, 许敬亮, 袁振宏, 等. 纤维素酶基因表达研究进展. 林产化学与工业, 2014, 34(5): 169-174.
He M C, Xu J L, Yuan Z H, et al. Research progress in the expression of cellulase. Chemistry and Industry of Forest Products, 2014, 34(5): 169-174.
[56] Xiong Y, Sun J P, Glass N L. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa. PLoS Genetics, 2014, 10(8): e1004500.
[57] Ivanova C, Ramoni J, Aouam T, et al. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib 1 expression and loss of cellulase induction. Biotechnology for Biofuels, 2017, 10: 209.
doi: 10.1186/s13068-017-0897-7
[58] Zhang F, Zhao X Q, Bai F W. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresource Technology, 2018, 247: 676-683.
doi: S0960-8524(17)31691-7 pmid: 30060399
[59] Chen L, Zou G, Wang J Z, et al. Characterization of the Ca2+-responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Molecular Microbiology, 2016, 100(3): 560-575.
doi: 10.1111/mmi.13334
[60] Seiboth B, Karimi R A, Phatale P A, et al. The putative protein methyltransferase LAE 1 controls cellulase gene expression in Trichoderma reesei. Molecular Microbiology, 2012, 84(6): 1150-1164.
doi: 10.1111/j.1365-2958.2012.08083.x
[61] Antonieto A C C, Nogueira K M V, de Paula R G, et al. A novel Cys2His 2 zinc finger homolog of AZF1 modulates holocellulase expression in Trichoderma reesei. mSystems, 2019, 4(4): e00161-e00119.
[62] Wang L, Yang R F, Cao Y L, et al. CLP1, a novel plant homeo domain protein, participates in regulating cellulase gene expression in the filamentous fungus Trichoderma reesei. Frontiers in Microbiology, 2019, 10: 1700.
doi: 10.3389/fmicb.2019.01700 pmid: 31447796
[63] Schuster A, Kubicek C P, Schmoll M. Dehydrogenase GRD1 represents a novel component of the cellulase regulon in Trichoderma reesei (Hypocrea jecorina). Applied and Environmental Microbiology, 2011, 77(13): 4553-4563.
doi: 10.1128/AEM.00513-11 pmid: 21602376
[64] Cao Y L, Zheng F L, Wang L, et al. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr 1 in Trichoderma reesei. Molecular Microbiology, 2017, 105(1): 65-83.
doi: 10.1111/mmi.13685
[65] Meng Q S, Zhang F, Liu C G, et al. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering. Biotechnology and Bioengineering, 2020, 117(6): 1747-1760.
doi: 10.1002/bit.27321
[66] Ries L, Belshaw N J, Ilmén M, et al. The role of CRE 1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Applied Microbiology and Biotechnology, 2014, 98(2): 749-762.
doi: 10.1007/s00253-013-5354-3 pmid: 24241958
[67] Mello-de-Sousa T M, Rassinger A, Pucher M E, et al. The impact of chromatin remodelling on cellulase expression in Trichoderma reesei. BMC Genomics, 2015, 16(1): 588.
doi: 10.1186/s12864-015-1807-7
[68] Zeilinger S, Schmoll M, Pail M, et al. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh 2 associated with cellulase induction. Molecular Genetics and Genomics: MGG, 2003, 270(1): 46-55.
doi: 10.1007/s00438-003-0895-2
[69] Xin Q, Gong Y J, Lv X X, et al. Trichoderma reesei histone acetyltransferase Gcn 5 regulates fungal growth, conidiation, and cellulase gene expression. Current Microbiology, 2013, 67(5): 580-589.
doi: 10.1007/s00284-013-0396-4 pmid: 23748966
[70] 王方忠, 蒋艺, 刘奎美, 等. 丝状真菌中纤维素酶与半纤维素酶的合成调控. 生物加工过程, 2014, 12(1): 72-79.
Wang F Z, Jiang Y, Liu K M, et al. Regulation of cellulase and hemicellulase production in filamentous fungi. Chinese Journal of Bioprocess Engineering, 2014, 12(1): 72-79.
[71] Nguyen E V, Imanishi S Y, Haapaniemi P, et al. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production. Journal of Proteome Research, 2016, 15(2): 457-467.
doi: 10.1021/acs.jproteome.5b00796
[72] Zhang J W, Zhang Y M, Zhong Y H, et al. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS One, 2012, 7(11): e48786.
[73] 张纪伟. 瑞氏木霉Ras信号途径对形态建成和纤维素酶合成的作用研究及酶系改良. 济南: 山东大学, 2013.
Zhang J W. Functional analysis of ras signaling for morphogenesis and cellulase synthesis in Trichoderma reesei and cellulase optimization. Jinan: Shandong University, 2013.
[74] Cziferszky A, Mach R L, Kubicek C P. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina(Trichoderma reesei). Journal of Biological Chemistry, 2002, 277(17): 14688-14694.
doi: 10.1074/jbc.M200744200 pmid: 11850429
[75] Schuster A, Tisch D, Seidl-Seiboth V, et al. Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Applied and Environmental Microbiology, 2012, 78(7): 2168-2178.
doi: 10.1128/AEM.06959-11 pmid: 22286997
[76] Wang M Y, Zhang M L, Li L, et al. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnology for Biofuels, 2017, 10: 99.
doi: 10.1186/s13068-017-0789-x
[77] Wang M Y, Zhao Q S, Yang J H, et al. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS One, 2013, 8(8): e72189.
doi: 10.1371/journal.pone.0072189
[78] Schmoll M, Franchi L, Kubicek C P. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryotic Cell, 2005, 4(12): 1998-2007.
pmid: 16339718
[79] Castellanos F, Schmoll M, Martínez P, et al. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genetics and Biology, 2010, 47(5): 468-476.
doi: 10.1016/j.fgb.2010.02.001 pmid: 20144726
[80] Tisch D, Kubicek C P, Schmoll M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics, 2011, 12: 613.
doi: 10.1186/1471-2164-12-613
[81] Schmoll M, Schuster A, Silva R D N, et al. The G-alpha protein GNA 3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryotic Cell, 2009, 8(3): 410-420.
doi: 10.1128/EC.00256-08 pmid: 19136572
[82] Seibel C, Gremel G, do Nascimento Silva R, et al. Light-dependent roles of the G-protein α subunit GNA 1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biology, 2009, 7: 58.
doi: 10.1186/1741-7007-7-58
[83] Tisch D, Kubicek C P, Schmoll M. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: envoy acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology, 2011, 48(6): 631-640.
doi: 10.1016/j.fgb.2010.12.009
[84] Schmoll M. Light, stress, sex and carbon: the photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biology, 2018, 122(6): 479-486.
doi: S1878-6146(17)30144-7 pmid: 29801792
[85] Beier S, Hinterdobler W, Bazafkan H, et al. CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genetics and Biology, 2020, 136: 103315.
[86] Li C, Yang Z H, He Can Zhang R, et al. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. Journal of Biotechnology, 2013, 168(4): 470-477.
doi: 10.1016/j.jbiotec.2013.10.003
[87] Chen Y M, Shen Y L, Wang W, et al. Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C 30 via calcium signaling. Biotechnology for Biofuels, 2018, 11: 54.
doi: 10.1186/s13068-018-1055-6
[1] 刘明珠,张良,郭芳,李春,冯旭东. 酵母表面展示体系的构建及在纤维素降解中的应用*[J]. 中国生物工程杂志, 2022, 42(5): 91-99.
[2] 侯思佳,张倩倩,孙振美,陈静,孟剑桥,梁丹,邬荣领,郭允倩. WIND转录因子在植物响应伤口胁迫和器官生长发育中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 85-92.
[3] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[6] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[7] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[8] 赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.
[9] 岳文冉,岳俊燕,张秀娟,杨杞,韩晓东,王瑞刚,李国婧. 中间锦鸡儿CiNAC1基因促进转基因拟南芥叶片的衰老[J]. 中国生物工程杂志, 2018, 38(4): 24-29.
[10] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[11] 徐嘉威,贺花,张静,雷初朝,陈宏,黄永震. 转录因子KLF8基因结构及其功能研究进展[J]. 中国生物工程杂志, 2018, 38(4): 90-95.
[12] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[13] 栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.
[14] 孟庆婷, 汤斌. 碳阻遏因子CRE对匍枝根霉产纤维素酶调控作用的研究[J]. 中国生物工程杂志, 2016, 36(3): 31-37.
[15] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.