Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (4): 18-29    DOI: 10.13523/j.cb.2101002
研究报告     
纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*
林艳梅,罗湘,李瑞杰,秦秀林(),冯家勋
广西大学生命科学与技术学院 亚热带农业生物资源保护与利用国家重点实验室 广西微生物与酶工程技术研究中心 南宁 530004
Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase
LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin(),FENG Jia-xun
College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, Nanning 530004, China
 全文: PDF(23354 KB)   HTML
摘要:

目的:纤维素酶水解天然纤维素产生易被微生物利用的葡萄糖是进行生物炼制的关键。丝状真菌分泌的纤维素酶大多数是经过糖基化修饰的,研究丝状真菌纤维二糖水解酶(Cel7A)的催化功能域N-糖基化修饰对其分泌及酶活的影响,有助于优化纤维素酶的表达。方法:利用定点突变将草酸青霉和深绿木霉Cel7A催化功能域的N-糖基化位点去除,构建突变体PoCel7A*和TaCel7A*。以草酸青霉为宿主构建分泌表达PoCel7A*、TaCel7A和TaCel7A*的重组菌,检测N-糖基化去除对Cel7A分泌和酶活力的影响。结果:PoCel7A催化功能域的N-糖基化去除对其蛋白分泌和酶活力无影响。TaCel7A催化功能域的N-糖基化去除不影响其蛋白分泌;但突变体的pNPCase、FPase和Avicelase酶活力分别下降了21.2%,15.2%和17.6%。去除Cel7A催化功能域N-糖基化,加强了细胞内UPR响应。外源蛋白TaCel7A和TaCel7A*的表达也加强了胞内UPR响应。结论:不仅可以为丝状真菌Cel7A的酶工程改造提供理性设计思路,而且为进一步了解糖基化在纤维素酶降解纤维素过程中的作用及机理奠定一定基础。

关键词: 纤维素酶纤维二糖水解酶N-糖基化丝状真菌    
Abstract:

Objective: Cellulases are responsible for the turnover of plant cell wall polysaccharides in the biosphere, and thus form the foundation of enzyme engineering efforts in biofuels research and industrial processes. Many of these carbohydrate-active enzymes from filamentous fungi contain both N-glycans and O-glycans, which in turn can unpredictably affect activity and secretion. Understanding the roles of glycosylation in the function of cellulase is important for further improvement of the enzyme technology for biomass conversion. Methods: The N-glycans defective mutants PoCel7A* and TaCel7A*, removal of the N-glycans on the catalytic domain of cellobiohydrolases from Penicillium oxalicum (PoCel7A) and Trichoderma atroviride (TaCel7A), were constructed using site directed mutagenesis. The extracellular protein concentration and enzymatic activity of the recombinant strains, expressing of PoCel7A *, TaCel7A or TaCel7A*, were determined to investigate whether the removal of N-glycosylation affects the activity and secretion of cellobiohydrolases. Results: The mutant PoCel7A* homologous expression in P. oxalicum, the removal of Asn137 glycosylation site at PoCel7A hardly affected the activity and secretion of Cel7A. However, after the Asn287 glycosylation site of TaCel7A was removed (TaCel7A *) and heterologous expression in P. oxalicum, the pNPCase, FPase and Avicelase activity of mutant decreased by 21.2%, 15.2% and 17.6%, respectively. Furthermore, compared to the parental strain, the expression levels of the UPR marker genes pdi1, bip1 and hac1 were significantly induced in recombinant strains, indicating increased demand for protein folding and transport capacity in recombinant strains. Conclusion: These results indicate that differential roles of N-glycan modifications in contributing to the function of Cel7A and highlight the potential of improving the activity and secretion of Cel7A by tuning proper interactions between glycans and functional residues.

Key words: Cellulase    Cellobiohydrolase    N-glycosylation    Filamentous fungi
收稿日期: 2020-12-31 出版日期: 2021-04-30
ZTFLH:  Q819  
基金资助: *国家自然科学基金(31300076);广西自然科学基金资助项目(2019GXNSFAA245001);广西自然科学基金资助项目(2018GXNSFAA281005);广西自然科学基金资助项目(2017GXNSFAA198136)
通讯作者: 秦秀林     E-mail: xiulinqin@gxu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林艳梅
罗湘
李瑞杰
秦秀林
冯家勋

引用本文:

林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.

LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase. China Biotechnology, 2021, 41(4): 18-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101002        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I4/18

引物名称 引物序列(5'- 3') 用途
PoCel_Fu ATGAAGGGTTCCATCTCCTACC Amplification of the Pocel7A*
PoCel_Ru TTACAGGCATGGGAGTAGTACTC
PoN137F ACCTGCTGGAGGACGACACCACTTACCAGAAGTTCAACCTCCTGAACCAG For site directed mutagenesis of Pocel7A
PoN137R GGTAAGTGGTGTCGTCCTCCAGCAGGTAGAGACGAGAACCGATGT
TaCel_cF ATGTATCAGAAACTAGCGG Amplification of the Tacel7A cDNA
TaCel_cR TTACAAGCACTGAGAGTAGTATTG
TaCel_Fu ATGTATCAGAAACTAGCGGCAA Amplification of the Tacel7A*
TaCel_Ru TTACAAGCACTGAGAGTAGTATTGG
TaN287F CCATACCGCTTGGGCGACCACACTTTCTATGGCC For site directed mutagenesis of Tacel7A
TaN287R CCATAGAAAGTGTGGTCGCCCAAGCGGTATGGGT
5'PoCel_F1 GTCCGAAGAAAGGGTACAGC Amplification of the 5' homologous region of Pocel7A
5'PoCel_R1 ATGCTCCTTCAATATCATCTTCTTGTGATGGATTGGATCAAAGATC
3'PoCel_F TAATCCTTCTTTCTAGAGTCTTGAGTGGTCGTCGAGGTCCTGCTCG Amplification of the 3' homologous region of Pocel7A
3'PoCel_R AACTCCACCGCCACCGTCTC
G418_F1 GATCTTTGATCCAATCCATCACAAGAAGATGATATTGAAGGAGC Amplification of the kan expression cassette
G418_R1 TCGACGACCACTCAAGACTCTAGAAAGAAGGATTACCTCT
5'PoCel_F2
GTCCGAAGAAAGGGTACAGC
Amplification of the 5' flanking region of cel7A expression cassette
5'PoCel_R2 AGGAGATGGAACCCTTCATTGTGATGGATTGGATCAAAGATCA
G418_F2 TAAAGAAGATGATATTGAAGGAG Amplification of the kan
G418_R2 ACCTCGACGACCACTCAAGACTCTAGAAAGAAGGATTAC
G418_F3 TACTACTCTCAGTGCTTGTAAAGAAGATGATATTGAAGGAG
TaCel_F TCTTTGATCCAATCCATCACAATGAAGGGTTCCATCTCCTACC Amplification of the Tacel7A
TaCel_R TCCTTCAATATCATCTTCTTTACAAGCACTGAGAGTAGTATTG
PoCel_F TCTTTGATCCAATCCATCACAATGAAGGGTTCCATCTCCTAC Amplification of the mutant Pocel7A*
PoCel_R TCCTTCAATATCATCTTCTTTACAGGCACTGGGAGTAGTAC
FuCel_F AATCCTGCTCCAAGGTCGTT Amplification of the cel7A expression cassette
FuCel_R CGTGTCATGAGATTCCAACCTT
Vcel7AF TGAGTTTCGCTGCTCCCAAG For checking correct integration
VGR ATCGATGCTTCGGTAGAATAGG
VGF CTCAAGCCTACAGGACACAC
Vcel7AR CTCAGGATGGTGTTTCAAGA
actin-qF CTCCATCCAGGCCGTTC qRT-PCR for quantification of actin
actin-qR CATGAGGTAGTCGGTCAAG
bip1-qF CCTGACGAGGCTGTTGCTTTC qRT-PCR for quantification of bip1
bip1-qR TGACGGAGTTACGGGGGATG
pdi1-qF GCCCTCCATCGTTCTCTACAAG qRT-PCR for quantification of pdi1
pdi1-qR CTCGGCGAAGATGTAGGCAA
hac1-qF ATAGTATCACCAGCCAGTCGC qRT-PCR for quantification of hac1
hac1-qR GGGATGAACTTTACCAATGCC
表1  引物序列
图1  利用SWISS-MODEL同源建模分析P. oxalicum HP7-1的PoCel7A三维结构及其N-糖基化位点突变
图2  利用SWISS-MODEL同源建模分析T. atroviride HP35-3的TaCel7A三维结构及其N-糖基化位点突变
图3  Pocel7A基因缺失的草酸青霉重组菌ΔPocel7A构建
图4  Cel7A及其突变体表达重组菌构建
图5  重组菌胞外蛋白浓度
图6  Cel7A催化功能域N-糖基化位点缺失对纤维素酶酶活力影响
图7  重组菌中UPR相关基因转录水平
[1] Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 2007,315(5813):804-807.
pmid: 17289988
[2] Heinzelman P, Snow C D, Wu I, et al. A family of thermostable fungal cellulases created by structure-guided recombination. PNAS, 2009,106(14):5610-5615.
pmid: 19307582
[3] Aich S, Datta S. Engineering of a highly thermostable endoglucanase from the GH7 family of Bipolaris sorokiniana for higher catalytic efficiency. Applied Microbiology and Biotechnology, 2020,104(9):3935-3945.
doi: 10.1007/s00253-020-10515-0 pmid: 32157426
[4] Dotsenko A S, Rozhkova A M, Zorov I N, et al. Protein surface engineering of endoglucanase Penicillium verruculosum for improvement in thermostability and stability in the presence of 1-butyl-3-methylimidazolium chloride ionic liquid. Bioresource Technology, 2020,296:122370.
pmid: 31734058
[5] Margeot A, Hahn-Hagerdal B, Edlund M, et al. New improvements for lignocellulosic ethanol. Current Opinion in Biotechnology, 2009,20(3):372-380.
doi: 10.1016/j.copbio.2009.05.009 pmid: 19502048
[6] Markov A V, Gusakov A V, Kondratyeva E G, et al. New effective method for analysis of the component composition of enzyme complexes from Trichoderma reesei. Biochemistry (Moscow), 2005,70(6):657-663.
[7] Amore A, Knott B C, Supekar N T, et al. Distinct roles of N- and O-glycans in cellulase activity and stability. PNAS, 2017,114(52):13667-13672.
doi: 10.1073/pnas.1714249114 pmid: 29229855
[8] Beckham G T, Dai Z Y, Matthews J F, et al. Harnessing glycosylation to improve cellulase activity. Current Opinion in Biotechnology, 2012,23(3):338-345.
doi: 10.1016/j.copbio.2011.11.030 pmid: 22186222
[9] Jeoh T, Michener W, Himmel M E, et al. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnology for Biofuels, 2008,1(1):1-12.
doi: 10.1186/1754-6834-1-1 pmid: 18471312
[10] Kołaczkowski B M, Schaller K S, Sørensen T H, et al. Removal of n-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. Biotechnology for Biofuels, 2020,13:136.
pmid: 32782472
[11] Boraston A B, Sandercock L E, Warren R A J, et al. O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris. Journal of Molecular Microbiology and Biotechnology, 2003,5(1):29-36.
doi: 10.1159/000068721 pmid: 12673059
[12] Stals I, Sandra K, Geysens S, et al. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology, 2004,14(8):713-724.
pmid: 15070858
[13] Rubio M V, Zubieta M P, Franco Cairo J P L, et al. Mapping n-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose. Biotechnology for Biofuels, 2016,9:168.
doi: 10.1186/s13068-016-0580-4 pmid: 27508003
[14] Adney W S, Jeoh T, Beckham G T, et al. Probing the role of n-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose, 2009,16(4):699-709.
[15] Voutilainen S P, Murray P G, Tuohy M G, et al. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Engineering, Design and Selection, 2010,23(2):69-79.
[16] Wei Y D, Lee S J, Lee K S, et al. N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. Biochemical and Biophysical Research Communications, 2005,329(1):331-336.
doi: 10.1016/j.bbrc.2005.01.131 pmid: 15721311
[17] Zhang Z, Liu J L, Lan J Y, et al. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnology for Biofuels, 2014,7(1):1-14.
doi: 10.1186/1754-6834-7-1 pmid: 24387051
[18] Zhao S, Yan Y S, He Q P, et al. Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression. Biotechnology for Biofuels, 2016,9:203.
pmid: 27688806
[19] Huang Y P, Qin X L, Luo X M, et al. Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass and Bioenergy, 2015,77:53-63.
[20] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[21] Textor L C, Colussi F, Silveira R L, et al. Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity. The FEBS Journal, 2013,280(1):56-69.
doi: 10.1111/febs.12049 pmid: 23114223
[22] Rocha V A, Maeda R N, Pereira N, et al. Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnology Progress, 2016,32(2):327-336.
doi: 10.1002/btpr.2217 pmid: 26697775
[23] Schneider W D H, Gonçalves T A, Uchima C A, et al. Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnology for Biofuels, 2016,9:66.
pmid: 26989443
[24] Florencio C, Cunha F M, Badino A C, et al. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: enzyme production for sugarcane bagasse hydrolysis. Enzyme and Microbial Technology, 2016,90:53-60.
doi: 10.1016/j.enzmictec.2016.04.011 pmid: 27241292
[25] 马亚楠, 王明钰, 徐海. 纤维素酶的糖基化. 微生物学报, 2017,57(12):1761-1768.
Ma Y N, Wang M Y, Xu H. Progress in cellulase glycosylation. Acta Microbiologica Sinica, 2017,57(12):1761-1768.
[26] Qi F F, Zhang W X, Zhang F J, et al. Deciphering the effect of the different N-glycosylation sites on the secretion, activity, and stability of cellobiohydrolase I from Trichoderma reesei. Applied and Environmental Microbiology, 2014,80(13):3962-3971.
doi: 10.1128/AEM.00261-14 pmid: 24747898
[27] Wu G C, Wei L G, Liu W F, et al. Asn64-glycosylation affects Hypocrea jecorina (syn. Trichoderma reesei) cellobiohydrolase Cel7A activity expressed in Pichia pastoris. World Journal of Microbiology and Biotechnology, 2010,26(2):323-328.
[28] Guan B, Chen F X, Su S, et al. Effects of co-overexpression of secretion helper factors on the secretion of a HSA fusion protein (IL2-HSA) in Pichia pastoris. Yeast, 2016,33(11):587-600.
[29] Tang H T, Bao X M, Shen Y, et al. Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2015,112(9):1872-1882.
doi: 10.1002/bit.25596 pmid: 25850421
[30] Heimel K. Unfolded protein response in filamentous fungi-implications in biotechnology. Applied Microbiology and Biotechnology, 2015,99(1):121-132.
pmid: 25384707
[1] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[2] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[3] 李庆猛,李盛陶,王宁,高晓冬. 酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *[J]. 中国生物工程杂志, 2018, 38(6): 26-33.
[4] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[5] 孟庆婷, 汤斌. 碳阻遏因子CRE对匍枝根霉产纤维素酶调控作用的研究[J]. 中国生物工程杂志, 2016, 36(3): 31-37.
[6] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.
[7] 赵峰, 张宜俊, 冉艳红, 王兴勇, 叶倩君, 李弘剑. rhIL-12二硫键、N-糖基化位点及C端氨基酸序列分析[J]. 中国生物工程杂志, 2014, 34(5): 39-53.
[8] 吴琼, 王猛, 李雅乾, 高士刚, 余传金, 孙佳楠, 张泰龙, 陈捷. 雷公根叶斑病菌SJTU59纤维素酶液的性质研究及纤维素酶基因保守区域的分析[J]. 中国生物工程杂志, 2014, 34(3): 61-67.
[9] 杨华军, 邹少兰, 刘成, 马媛媛, 马向霞, 洪解放. 纤维素酶在酿酒酵母中的表达研究[J]. 中国生物工程杂志, 2014, 34(06): 75-83.
[10] 蔡晶晶, 段学辉, 谢亮, 郑希帆, 沈江涛. 三菌混合固态发酵产纤维素酶[J]. 中国生物工程杂志, 2013, 33(7): 57-63.
[11] 谢春芳, 黎玉凤, 刘大岭, 姚冬生. 利用N-糖基化修饰对β-甘露聚糖酶Man47的稳定性改造[J]. 中国生物工程杂志, 2013, 33(12): 79-85.
[12] 顾芮萌, 李勇昊, 田朝光. 粗糙脉孢菌(Neurospora crassa)纤维素酶液体发酵培养基的优化[J]. 中国生物工程杂志, 2012, 32(03): 76-82.
[13] 陈科, 黄潇, 路蕾, 邢芸, 侯景, 吴洁, 刘景晶. 不同调控元件驱动下菊欧氏杆菌纤维素酶celY基因在大肠杆菌中表达的研究[J]. 中国生物工程杂志, 2012, 32(02): 24-28.
[14] 秦慧彬, 杨洪江, 黄文, 李玲艳. 强启动子glaA介导cbhB基因在黑曲霉中的表达[J]. 中国生物工程杂志, 2010, 30(11): 34-38.
[15] 殷亮 杨文竹 王新宇 周蕴芝 姚斌 陈茹梅 范云六. 黑曲霉Aspergillus niger 963植酸酶基因phyA2 N-糖基化突变体的构建与表达分析[J]. 中国生物工程杂志, 2010, 30(06): 54-59.