Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 85-92    DOI: 10.13523/j.cb.2109021
综述     
WIND转录因子在植物响应伤口胁迫和器官生长发育中的研究进展*
侯思佳,张倩倩,孙振美,陈静,孟剑桥,梁丹,邬荣领,郭允倩**()
北京林业大学生物科学与技术学院 计算生物学中心 北京 100083
Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants
HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian**()
College of Biological Science and Technology, Beijing Forestry University, Center for Computational Biology, Beijing 100083, China
 全文: PDF(1213 KB)   HTML
摘要:

伤口诱导的去分化因子(WOUND INDUCED DEDIFFERENTIATION,WIND)是AP2/ERF家族成员之一。植物AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR)是一个庞大的转录因子基因家族,存在于所有的植物中。目前大部分关于WIND转录因子的研究都局限在模式植物拟南芥中,在其他植物中鲜有研究。总结了近年来WIND基因在植物伤口信号响应、愈伤组织形成、植物生长和代谢及表观遗传调控中的作用,为后续进一步探究该基因的功能及其应用提供理论基础。

关键词: AP2/ERF基因家族转录因子WIND生物学功能    
Abstract:

Wound induced dedifferentiation(WIND) is one of the members of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF), a large transcription factor gene family, which exists in all plants. Currently, most of the researches of WIND transcription factor focus on the Arabidopsis thaliana, but there are few studies on other plants. As a summary of the researches in recent years on the roles of WIND gene in plant wound signal response, the formation of callus, plant growth and metabolism, and epigenetic regulation, the present review is expected to provide a theoretical basis for further research on the function and application of WIND gene.

Key words: AP2/ERF gene family    Transcription factor    WIND    Biological functions
收稿日期: 2021-09-08 出版日期: 2022-05-05
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31370669)
通讯作者: 郭允倩     E-mail: guoyunqian@bjfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
侯思佳
张倩倩
孙振美
陈静
孟剑桥
梁丹
邬荣领
郭允倩

引用本文:

侯思佳,张倩倩,孙振美,陈静,孟剑桥,梁丹,邬荣领,郭允倩. WIND转录因子在植物响应伤口胁迫和器官生长发育中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 85-92.

HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants. China Biotechnology, 2022, 42(4): 85-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2109021        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/85

生物学功能 基因 物种 参考文献
伤口信号转导 WIND1Fm WIND1 拟南芥、水曲柳 [14,26]
控制细胞的脱分化 WIND1WIND2WIND3WIND4 拟南芥 [26,29]
促进愈伤组织形成 WIND1Fm WIND1 拟南芥、水曲柳 [1,30]
不定芽再生 WIND1Fm WIND1 拟南芥、水曲柳 [27]
不定根再生 WIND1 拟南芥 [31-32]
与其他转录因子协同作用 WIND1 拟南芥 [33]
表观遗传修饰 WIND1WIND2WIND3Fm WIND1 拟南芥、水曲柳 [34-35]
表1  WIND基因生物学功能最新研究进展
图1  WIND基因参与分子调控网络
[1] Ikeuchi M, Ogawa Y, Iwase A, et al. Plant regeneration: cellular origins and molecular mechanisms. Development (Cambridge, England), 2016, 143(9): 1442-1451.
doi: 10.1242/dev.134668
[2] Thorpe T A. History of plant tissue culture. Molecular Biotechnology, 2007, 37(2): 169-180.
doi: 10.1007/s12033-007-0031-3
[3] Birnbaum K D, Alvarado A S. Slicing across kingdoms: regeneration in plants and animals. Cell, 2008, 132(4): 697-710.
doi: 10.1016/j.cell.2008.01.040 pmid: 18295584
[4] Tanaka E M, Reddien P W. The cellular basis for animal regeneration. Developmental Cell, 2011, 21(1): 172-185.
doi: 10.1016/j.devcel.2011.06.016 pmid: 21763617
[5] Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 1957, 11: 118-130.
[6] Valvekens D, van Montagu M, van Lijsebettens M.Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(15): 5536-5540.
[7] Che P, Lall S, Howell S H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 2007, 226(5): 1183-1194.
doi: 10.1007/s00425-007-0565-4
[8] Atta R, Laurens L, Boucheron-Dubuisson E, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal: for Cell and Molecular Biology, 2009, 57(4): 626-644.
doi: 10.1111/j.1365-313X.2008.03715.x
[9] Sugimoto K, Jiao Y L, Meyerowitz E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Developmental Cell, 2010, 18(3): 463-471.
doi: 10.1016/j.devcel.2010.02.004 pmid: 20230752
[10] 张麒, 陈静, 李俐, 等. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
Zhang Q, Chen J, Li L, et al. Research progress on plant AP2/ERF transcription factor family. Biotechnology Bulletin, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
[11] 孙滨, 占小登, 曹立勇, 等. 水稻AP2/ERF转录因子的研究进展. 农业生物技术学报, 2017, 25(11): 1860-1869.
Sun B, Zhan X D, Cao L Y, et al. Research progress of AP2/ERF transcription factor in rice(Oryza sativa). Journal of Agricultural Biotechnology, 2017, 25(11): 1860-1869.
[12] 赵金玲, 姚文静, 王升级, 等. 杨树AP2/ERF转录因子家族生物信息学分析. 东北林业大学学报, 2015, 43(10): 21-29.
Zhao J L, Yao W J, Wang S J, et al. AP2/ERF gene family in Populus trichocarpa by bioinformatics. Journal of Northeast Forestry University, 2015, 43(10): 21-29.
[13] Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009.
pmid: 11798174
[14] Heyman J, Canher B, Bisht A, et al. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science, 2018, 131(2): jcs208215.
[15] Rashid M, He G Y, Yang G X, et al. AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evolutionary Bioinformatics Online, 2012, 8: 321-355.
[16] Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 1996, 8(2): 155-168.
[17] Boutilier K, Offringa R, Sharma V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 2002, 14(8): 1737-1749.
doi: 10.1105/tpc.001941
[18] Yamaguchi-Shinozaki K, Shinozaki K. A novel Cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
[19] Thomashow M F. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 571-599.
pmid: 15012220
[20] Hao D Y, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. Journal of Biological Chemistry, 1998, 273(41): 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[21] Alonso J M, Stepanova A N, Leisse T J, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301(5633): 653-657.
pmid: 12893945
[22] HU Y X, WANG Y H, LIU X F, et al. Arabidopsis RAV 1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research, 2004, 14 (1): 8-15.
doi: 10.1038/sj.cr.7290197
[23] Sohn K H, Lee S C, Jung H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV 1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology, 2006, 61(6): 897-915.
doi: 10.1007/s11103-006-0057-0
[24] Lin R C, Park H J, Wang H Y. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Molecular Plant, 2008, 1(1): 42-57.
doi: 10.1093/mp/ssm004
[25] Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7076-7081.
[26] Iwase A, Ohme-Takagi M, Sugimoto K. WIND1: a key molecular switch for plant cell dedifferentiation. Plant Signaling & Behavior, 2011, 6(12): 1943-1945.
[27] Iwase A, Harashima H, Ikeuchi M, et al. WIND 1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell, 2017, 29(1): 54-69.
doi: 10.1105/tpc.16.00623
[28] Zhou C, Guo J S, Feng Z H, et al. Molecular characterization of a novel AP 2 transcription factor ThWIND1-L from Thellungiella halophila. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 110(3): 423-433.
doi: 10.1007/s11240-012-0163-4
[29] Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcription factor WIND 1 controls cell dedifferentiation in Arabidopsis. Current Biology, 2011, 21(6): 508-514.
doi: 10.1016/j.cub.2011.02.020
[30] Müller B, Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 2008, 453 (7198): 1094-1097.
doi: 10.1038/nature06943
[31] Sheng L H, Hu X M, Du Y J, et al. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development (Cambridge, England), 2017, 144(17): 3126-3133.
[32] Liu J C, Sheng L H, Xu Y Q, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell, 2014, 26(3): 1081-1093.
doi: 10.1105/tpc.114.122887
[33] Iwase A, Mita K, Nonaka S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 2015, 128(3): 389-397.
doi: 10.1007/s10265-015-0714-y
[34] Ikeuchi M, Iwase A, Rymen B, et al. PRC 2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants, 2015, 1(7): 15089.
doi: 10.1038/nplants.2015.89
[35] Bouyer D, Roudier F, Heese M, et al. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition[J]PLoS Genet, 2011, 7(3): e1002014.
doi: 10.1371/journal.pgen.1002014
[36] Druege U, Franken P, Hajirezaei M R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science, 2016, 7: 381.
doi: 10.3389/fpls.2016.00381 pmid: 27064322
[37] Ahkami A H, Lischewski S, Haensch K T, et al. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. The New Phytologist, 2009, 181(3): 613-625.
doi: 10.1111/j.1469-8137.2008.02704.x
[38] Iwase A, Ishii H, Aoyagi H, et al. Comparative analyses of the gene expression profiles of Arabidopsis intact plant and cultured cells. Biotechnology Letters, 2005, 27(15): 1097-1103.
doi: 10.1007/s10529-005-8456-x
[39] Iwase A, Mitsuda N, Ikeuchi M, et al. Arabidopsis WIND 1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signaling & Behavior, 2013, 8(12): e27432.
[40] Stappenbeck T S, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science, 2009, 324(5935): 1666-1669.
doi: 10.1126/science.1172687 pmid: 19556498
[41] Ikeuchi M, Iwase A, Rymen B, et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology, 2017, 175(3): 1158-1174.
doi: 10.1104/pp.17.01035 pmid: 28904073
[42] Ozawa S, Yasutani I, Fukuda H, et al. Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development (Cambridge, England), 1998, 125(1): 135-142.
doi: 10.1242/dev.125.1.135
[43] Che P, Gingerich D J, Lall S, et al. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. The Plant Cell, 2002, 14(11): 2771-2785.
doi: 10.1105/tpc.006668
[44] Gallois J L, Nora F R, Mizukami Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes & Development, 2004, 18(4): 375-380.
doi: 10.1101/gad.291204
[45] Gordon S P, Heisler M G, Reddy G V, et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development (Cambridge, England), 2007, 134(19): 3539-3548.
doi: 10.1242/dev.010298
[46] Meng W J, Cheng Z J, Sang Y L, et al. Type-B Arabidopsis RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6): 1357-1372.
doi: 10.1105/tpc.16.00640
[47] Wang J, Tian C H, Zhang C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. The Plant Cell, 2017, 29(6): 1373-1387.
doi: 10.1105/tpc.16.00579 pmid: 28576845
[48] Zhang T Q, Lian H, Zhou C M, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell, 2017, 29(5): 1073-1087.
doi: 10.1105/tpc.16.00863
[49] Zubo Y O, Blakley I C, Yamburenko M V, et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): E5995-E6004.
[50] Che P, Lall S, Nettleton D, et al. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology, 2006, 141(2): 620-637.
doi: 10.1104/pp.106.081240
[51] Banno H, Ikeda Y, Niu Q W, et al. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. The Plant Cell, 2001, 13(12): 2609-2618.
doi: 10.1105/tpc.010234
[52] Kirch T, Simon R, Grünewald M, et al. The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. The Plant Cell, 2003, 15(3): 694-705.
doi: 10.1105/tpc.009480
[53] Matsuo N, Makino M, Banno H. Arabidopsis enhancer of shoot regeneration (esr)1 and esr2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Science, 2011, 181(1): 39-46.
doi: 10.1016/j.plantsci.2011.03.007 pmid: 21600396
[54] Chatfield S P, Capron R, Severino A, et al. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. The Plant Journal: for Cell and Molecular Biology, 2013, 73(5): 798-813.
doi: 10.1111/tpj.12085
[55] Cheng Z J, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology, 2013, 161(1): 240-251.
doi: 10.1104/pp.112.203166 pmid: 23124326
[56] Efroni I, Mello A, Nawy T, et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell, 2016, 165(7): 1721-1733.
doi: S0092-8674(16)30491-3 pmid: 27212234
[57] Heyman J, Cools T, Canher B, et al. The heterodimeric transcription factor complex ERF115-PAT 1 grants regeneration competence. Nature Plants, 2016, 2: 16165.
doi: 10.1038/nplants.2016.165 pmid: 27797356
[58] Ledwoń A, Gaj M D. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Reports, 2009, 28(11): 1677-1688.
doi: 10.1007/s00299-009-0767-2
[59] Ikeuchi M, Iwase A, Sugimoto K. Control of plant cell differentiation by histone modification and DNA methylation. Current Opinion in Plant Biology, 2015, 28: 60-67.
doi: 10.1016/j.pbi.2015.09.004 pmid: 26454697
[60] Holec S, Berger F. Polycomb group complexes mediate developmental transitions in plants. Plant Physiology, 2011, 158(1): 35-43.
doi: 10.1104/pp.111.186445
[61] He C S, Chen X F, Huang H, et al. Reprogramming of H3K27me 3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genetics, 2012, 8(8): e1002911.
doi: 10.1371/journal.pgen.1002911
[62] Bellini C, Pacurar D I, Perrone I. Adventitious roots and lateral roots: similarities and differences. Annual Review of Plant Biology, 2014, 65: 639-666.
doi: 10.1146/annurev-arplant-050213-035645
[63] Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. Frontiers in Plant Science, 2014, 5: 495.
doi: 10.3389/fpls.2014.00495 pmid: 25324849
[64] Pacurar D I, Pacurar M L, Lakehal A, et al. The Arabidopsis Cop 9 signalosome subunit 4 (CSN4) is involved in adventitious root formation. Scientific Reports, 2017, 7: 628.
doi: 10.1038/s41598-017-00744-1 pmid: 28377589
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[3] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[4] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[5] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[6] 赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.
[7] 岳文冉,岳俊燕,张秀娟,杨杞,韩晓东,王瑞刚,李国婧. 中间锦鸡儿CiNAC1基因促进转基因拟南芥叶片的衰老[J]. 中国生物工程杂志, 2018, 38(4): 24-29.
[8] 徐嘉威,贺花,张静,雷初朝,陈宏,黄永震. 转录因子KLF8基因结构及其功能研究进展[J]. 中国生物工程杂志, 2018, 38(4): 90-95.
[9] 马力, 吴昊, 王斌斌, 乔建军, 朱宏吉. 转录调控因子Rex的功能及调节机制研究进展[J]. 中国生物工程杂志, 2016, 36(10): 94-100.
[10] 李冉, 王恬, 朱鸿亮. 长链非编码RNA的生物学功能和研究方法[J]. 中国生物工程杂志, 2015, 35(9): 66-70.
[11] 梁丽珠, 孙佳楠, 李恺, 刘明伟, 丁琛, 秦钧. 蛋白质组分析油酸对HepG2细胞转录因子DNA结合活性的影响[J]. 中国生物工程杂志, 2015, 35(5): 22-31.
[12] 冯天祥, 王玲, 陈海敏, 盛清, 左锐, 谢文杰. 植物内生放线菌功能及生物活性物质研究进展[J]. 中国生物工程杂志, 2015, 35(4): 98-106.
[13] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[14] 成志勇, 梁文同, 王素云, 颜晓燕, 李华, 王宝艳, 田赫, 魏玉涛, 芦希. PTEN/NF-κB/Caspase信号通路对K562/ADM细胞阿霉素耐药逆转机制的研究[J]. 中国生物工程杂志, 2013, 33(3): 54-60.
[15] 孙昊, 卢存福, 郭允倩. LSD1通过和Oct4/Nanog相互作用调节诱导多能干细胞的形成[J]. 中国生物工程杂志, 2012, 32(12): 25-29.