Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (11): 54-62    DOI: 10.13523/j.cb.20161108
技术与方法     
鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价
梁向南1, 张鲲2, 邹少兰2, 王建军1, 马媛媛2, 洪解放2
1 天津大学化工学院 天津 300072;
2 天津大学石化中心 天津 300072
Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration
LIANG Xiang nan1, ZHANG Kun2, ZOU Shao lan2, WANG Jian jun1, MA Yuan yuan2, HONG Jie fang2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Tianjin R & D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(794 KB)   HTML
摘要:

木质纤维素乙醇具有替代化石燃料的潜力,其生产过程包括生物质预处理、纤维素酶生产、水解和发酵等多个步骤。将纤维素酶生产、水解和发酵组合在一起的统合生物加工过程(consolidated bioprocessing,CBP)由于能降低水解和发酵成本而具有应用于纤维素乙醇生产的潜力,该技术的关键是构建能有效降解纤维素的工程菌株,而构建表达纤维素酶的酿酒酵母即是其中一种选择。采用鸡尾酒多拷贝δ整合的策略将7种纤维素酶基因(Trichoderma reesei cbh1、cbh2egl2,Aspergillus aculeatus cbh1、egl1bgl1)表达盒整合至酿酒酵母W303-1A染色体上,经4轮整合筛选得到菌株LA1、LA2、LA3和LA4。对这4个菌株进行纤维素酶活性测定,结果表明从LA1到LA3各种纤维素酶活性呈递增趋势,而LA4的酶活性与LA3的酶活水平相当。对菌株LA3进行酸碱预处理玉米芯料的发酵评价,结果表明:①在外加商品化纤维素酶的情况下,与对照菌株W303-1A和AADY相比,LA3能有效利用纤维素料发酵产醇;②与分步整合的菌株W3相比,发酵性能更优;③培养基中的营养成分影响菌株发酵性能。这些结果表明,鸡尾酒δ整合是一种有效的构建酿酒酵母CBP菌株的方法。

关键词: 统合生物加工鸡尾酒&delta纤维素乙醇整合酿酒酵母纤维素酶    
Abstract:

Lignocellulosic ethanol has the potential to replace fossil fuels, and its production requires multiple steps including pretreatment, cellulase production, saccharification, and fermentation. By combining enzyme production, saccharification and fermentation into a single step, consolidated bioprocessing (CBP), which could reduce costs of hydrolysis and fermentation, is a promising technology for cellulosic ethanol production. And the key to CBP is the engineering of a microorganism that can efficiently utilize cellulose. Development of cellulolytic Saccharomyces cerevisiae strains is one of strategies. Six cellulase-encoding genes (cbh1, cbh2 and egl2 from Trichoderma reesei, cbh1, egl1, and bgl1 from Aspergillus aculeatus) were integrated into the Saccharomyces cerevisiae W303-1A chromosome via repeated cocktail δ-integration, generating strains LA1, LA2, LA3, and LA4. The aforementioned strains were evaluated by enzyme assay, and the results indicated that the BGL, CMCase, FPase, and PASC degradation activity of LA1, LA2, and LA3 ascended, however, the corresponding cellulase activities of the strain LA4 were similar to that of LA3. The fermentation performance of strain LA3 was evaluated using acid-and alkali-pretreated corncob as substrate, the results showed that:①Compared with the control strains W303-1A and AADY, strain LA3 could efficiently ferment pretreated corncob to ethanol with commercial cellulase addition. ②LA3 exhibited higher fermentation ability than W3 which was constructed via cellulase genes sequentially integration. ③ The nutrition used in the media affected the fermentation performance of S. cerevisiae strains. These results indicated that cocktail δ-integration was an efficient approach to construct CBP-enabling S. cerevisiae strains.

Key words: Saccharomyces cerevisiae    Cellulase    Cocktail δ-integration    Consolidated bioprocessing(CBP)    Cellulosic ethanol
收稿日期: 2016-04-13 出版日期: 2016-11-25
ZTFLH:  Q815  
基金资助:

国家自然科学基金资助项目(31470208)

通讯作者: 洪解放,hjf@tju.edu.cn     E-mail: hjf@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.

LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration. China Biotechnology, 2016, 36(11): 54-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161108        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I11/54

[1] 曲音波. 纤维素乙醇产业化. 化学进展, 2007, 19(7/8):1098-1108. Qu Y B. Industrialization of cellulosic ethanol. Progress in Chemistry, 2007, 19(7/8):1098-1108.
[2] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review. Bioresour Technol, 2010, 101(13):4851-4861.
[3] Krishnan C, Sousa L D, Jin M, et al. Alkali-based APEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng, 2010, 107(3):441-450.
[4] Lynd L R, van Zyl W H, McBride J E, et al. Consolidated bioprocessing of cellulosic biomass:an update. Curr Opin Biotechnol, 2005, 16(5):577-583.
[5] Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol——the fuel of tomorrow from the residues of today. Trends Biotechnol, 2006, 24(12):549-556.
[6] Hong J F, Yang H J, Zhang K, et al. Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World Journal of Microbiology & Biotechnology, 2014, 30(11):2985-2993.
[7] Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv, 2012, 30(6):1207-1218.
[8] la Grange D C, de Haan R, van Zyl W H. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol, 2010, 87(4):1195-1208.
[9] van Zyl W H, Lynd L R, den Haan R, et al. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol, 2007, 108:205-235.
[10] Wang G Q, Liu C, Hong J F,et al. Comparison of process configurations for ethanol production from acid-and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression. Bioresource Technology, 2013, 142:154-161.
[11] Sticker A R, Mach R L, de Graaff L H. Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol, 2008, 78(2):211-220.
[12] Yamada R, Taniguchi N, Tanaka T, et al. Cocktail delta-integration:a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact, 2010, 9(1):32.
[13] Lynd L R, van Zyl W H, McBride J E, et al. Consolidated bioprocessing of cellulosic biomass:an update. Curr Opin Biotechnol, 2005, 16(5):577-583.
[14] 张韦娜. 表达纤维素酶基因的酿酒酵母菌株构建及其底物利用评价.天津:天津大学,化工学院,2012.

[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[3] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[6] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[7] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[10] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[11] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[12] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[13] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[14] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[15] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.