Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 52-61    DOI: 10.13523/j.cb.2010028
综述     
里氏木霉产纤维素酶研究进展 *
徐晓1,程驰1,**(),袁凯2,薛闯1,2,**()
1 大连理工大学生物工程学院 大连市合成生物学应用转化工程技术研究中心 大连 116024
2 江苏华英顺昌生物科技有限公司 徐州 221427
Research Progress of Cellulase Production in Trichoderma reesei
XU Xiao1,CHENG Chi1,**(),YUAN Kai2,XUE Chuang1,2,**()
1 School of Bioengineering, Dalian University of Technology, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian 116024, China
2 Jiangsu Huaying Shunchang Biotechnology Co., Ltd, Xuzhou 221427, China
 全文: PDF(5173 KB)   HTML
摘要:

木质纤维素类生物质被认为是重要且可持续的可再生能源,其主要组成部分是纤维素。纤维素酶是一种能将纤维素分解为葡萄糖的复合酶,能有效地降解木质纤维素生物质。真菌、细菌、放线菌、酵母等多种微生物均可以产生纤维素酶,其中里氏木霉具有完整的纤维素酶系结构,常作为生物技术领域中一个重要菌株,广泛应用于纤维素酶的商业生产。介绍了纤维素酶的作用机理,综述了里氏木霉产纤维素酶的发展现状和研究进展,讨论了生产工艺(如培养条件及产酶诱导物等)对纤维素酶生产的影响,阐述了通过化学诱变及基因改造构建高产纤维素酶的里氏木霉的研究进展以及纤维素酶生产的主要瓶颈,以提供更经济的生产方案,将纤维素酶广泛应用于工业生产。

关键词: 里氏木霉纤维素酶诱导物基因改造    
Abstract:

Lignocellulosic biomass is considered an important and sustainable renewable energy source, which contains cellulose as the main component of lignocellulosic biomass. Cellulase is a group of enzymes that can decompose cellulose into glucose. Various microorganisms including fungi, bacteria, actinomycetes and yeasts are known to produce cellulase. Among them, Trichoderma reesei is one of the most widely used cellulolytic organisms that can produce a large amount of intact extracellular cellulase and hemicellulase to degrade lignocellulose. Therefore, T. reesei has become an important host microorganism for the production of commercial enzymes in the field of biotechnology. This article introduces the mechanism of cellulase, and summarizes the development status and the latest research progress of cellulase production by T. reesei. The influences of cellulase production technology including fermentation conditions and cellulase inducers, and the progress of different molecular strategies (such as mutagenesis and genetic modification) on constructing T. reesei with high cellulase-producing abilities were reviewed. In addition, the bottlenecks related to cellulase production are also discussed, in order to provide a more economical production process to widely apply cellulase in industrial production.

Key words: Trichoderma reesei    Cellulase    Inducer    Genetic modification
收稿日期: 2020-10-21 出版日期: 2021-02-09
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(21878035);国家自然科学基金(21808026);中国博士后科学基金(2019M661100);国家重点研发计划(2018YFB1501703);兴辽英才计划(XLYC1807269)
通讯作者: 程驰,薛闯     E-mail: cheng.chi@dlut.edu.cn;xue.1@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐晓
程驰
袁凯
薛闯

引用本文:

徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.

XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei. China Biotechnology, 2021, 41(1): 52-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2010028        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/52

图1  纤维素酶作用机制
Parental strain Gene manipulation Results Reference
T. reesei artificial transcription factor overexpression CMCase: 54.8 IU/(L·h)(increased by 12.8 times) [38]
T. reesei cre1 repression filter paper activity: 0.7 IU/mL(increased by 1.3 times)
endoglucanase activity: 3.7 IU/mL (increased by 1.8 times)
exoglucanase activity: 0.5 IU/mL(increased by 5.6 times)
[34]
T. reesei xyr1 overexpression CMCase: 68.7 IU/mL(increased by 134%) [40]
T. reesei cbh1 heterelogous expression filter paper activity: 1.7 IU/mL(increased by 2.2 times)
CMCase: 7.5 IU/mL(increased by 1.9 times)
β-glucosidase activity: 1.4 IU/mL(increased by 3.3 times)
[58]
T. reesei replacement of egl1 by ace1 CMCase: 10.7 IU/mL(increased by 90.0%) [59]
T. reesei β-Glucosidase gene heterelogous expression β-glucosidase activity: 34.3 IU/mL(increased by 6 to 8 times)
filter paper activity: 9.9 IU/mL (increased by 30%)
[62]
T. reesei serine kinase gene deletion endoglucanase activity: 9.1 IU/mL(increased by 25%~30%) [63]
表1  里氏木霉中成功过表达/抑制表达的基因
[1] Tao X Y, Xu T, Liu J T, et al. Precise promoter integration improves cellulose bioconversion and thermotolerance in Clostridium cellulolyticum. Metabolic Engineering, 2020,60:110-118.
pmid: 32294528
[2] 任俊莉, 刘慧莹, 王孝辉, 等. 木质纤维素资源化主要途径及半纤维素优先资源化利用策略. 生物加工过程, 2020,18(1):1-12.
Ren J L, Liu H Y, Wang X H, et al. Various approaches of lignocellulose utilization and strategies for hemicellulose-preferred lignocellulose biorefinery. Chinese Journal of Bioprocess Engineering, 2020,18(1):1-12.
[3] Kamyar K, Faezeh V, Mohammad B, et al. Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Molecular Catalysis, 2017,442:66-73.
[4] Watanabe H, Tokuda G. Animal cellulases. Cellular and Molecular Life Sciences: CMLS, 2001,58(9):1167-1178.
[5] Goedegebuur F, Fowler T, Phillips J, et al. Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Current Genetics, 2002,41:89-98.
[6] Will F, Bauckhage K, Dietrich H. Apple pomace liquefaction with pectinases and cellulases: analytical data of the corresponding juices. European Food Research Technology, 2002,211:291-297.
[7] Hiroki I, Tadanori A, Keisuke T, et al. Heterologous expression and characterization of the endocellulase encoding gene cel3A from the basidiomycete Polyporus arcularius. Mycoscience, 2005,46(3):154-161.
[8] Johnson E A, Madia A, Demain A L. Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Applied and Environmental Microbiology, 1981,41(4):1060-1062.
[9] Bhat M K. Cellulase and related enzymes in biotechnology. Biotechnology Advances, 2000,18(5):355-383.
pmid: 14538100
[10] Doyle J, Pavel R, Barness G, et al. Cellulase dynamics in a desert soil. Soil Biology and Biochemistry, 2006,38(2):371-376.
[11] Li Y H, Ding M, Wang J, et al. A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Applied Microbiology and Biotechnology, 2006,70(4):430-436.
[12] Song L L, Liu X X. Research progress of cellulase. Asian Agricultural Research, 2019,11(3):74-77.
[13] 王建荣, 张曼夫, 黄涛. 绿色木霉纤维素酶CBHⅡ基因的结构研究. 遗传学报, 1995,22(1):74-80.
Wang J R, Zhang M F, Huang T. Structural analysis of the gene coding for cellobiobydrase II of Trichoderma viride. Acta Genetica Sinica, 1995,22(1):74-80.
[14] Sukumaran R K, Singhania R R, Mathew G M, et al. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 2008,34(2):421-424.
[15] Zhang Y H, Hao N K, Lin X J, et al. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydrate Polymers, 2020,234:115888.
doi: 10.1016/j.carbpol.2020.115888 pmid: 32070508
[16] Cui Y Q, Van Der Lans R G, Luyben K C. Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnology and Bioengineering, 1998,57(4):409-419.
[17] Reichl U, King R, Gilles E D. Characterization of pellet morphology during submerged growth of Streptomyces tendae by image analysis. Biotechnology and Bioengineering, 1992,39(2):164-170.
[18] Domingues F C, Queiroz J A, Cabral J M S, et al. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 2000,26(5-6):394-401.
[19] Yan Z L, Cao X H, Liu Q D, et al. A Shortcut to the optimization of cellulase production using the mutant Trichoderma reesei YC-108. Indian Journal of Microbiology, 2012,52(4):670-675.
[20] Hao X C, Yu X B, Yan Z L. Optimization of the medium for the production of cellulase by the mutant Trichoderma reesei WX-112 using response surface methodology. Food Technology and Biotechnology, 2006,44(1):89-94.
[21] 祖彩霞, 李志敏, 叶勤. 里氏木霉产纤维素酶的发酵培养基碳氮源优化. 生物加工过程, 2011,9(4):6-10.
Zu C X, Li Z M, Ye Q. Culture medium optimization for producing cellulase by Trichoderma reesei. Chinese Journal of Bioprocess Engineering, 2011,9(4):6-10.
[22] Singhania R R, Sukumaran R K, Pandey A. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Applied Biochemistry and Biotechnology, 2007,142(1):60-70.
[23] 吕春娥. 稻草纤维素酶高产菌株的选育及其产酶条件的优化. 福州:福建农林大学, 2010.
Lv C E. Breeding of rice straw cellulase high-yielding strains and optimization of the conditions for producing enzyme. Fuzhou: Fujian Agriculture and Forestry University. 2010.
[24] Zhang L, Liu Y, Niu X R, et al. Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomassand Bioenergy, 2012,37:16-24.
[25] 王敏, 陈娜, 冯骏, 等. 筛选最佳生物质材料诱导里氏木霉生产纤维素酶. 基因组学与应用生物学, 2015,34(12):2644-2650.
Wang M, Chen N, Feng J, et al. Screening of the best biomass inducing T. reesei cellulase production. Genomics and Applied Biology, 2015,34(12):2644-2650.
[26] Li Y H, Liu C G, Bai F W, et al. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresource Technology, 2016,216:503-510.
[27] 黄振艳, 夏黎明. 利用葡萄糖转苷酶制备纤维素酶可溶性诱导物的研究. 高校化学工程学报, 2009,23(2):270-274.
Huang Z Y, Xia L M. Study on the soluble inducer for cellulase production derived from glucose by glucosylase. Journal of Chemical Engineering of Chinese Universities, 2009,23(2):270-274.
[28] 葛青, 章亭洲, 王腾浩, 等. 高产纤维素酶里氏木霉菌株诱变选育及其发酵条件优化. 饲料博览, 2019,6:6-10.
Ge Q, Zhang T Z, Wang T H, et al. Mutagenesis breeding and fermentation condition optimization of high yield cellulase enzyme of Trichoderma Reesei. Feed Expo, 2019,6:6-10.
[29] 邹宗胜. 高产纤维素酶菌株的筛选及其突变型分析和产酶优化. 无锡:江南大学, 2018.
Zou Z S. Screening of cellulase-producing strains and its mutant analysis and enzyme-producing optimization. Wuxi: Jiangnan University, 2018.
[30] 覃玲灵. 里氏木霉的紫外诱变和高活性纤维素酶突变株的选育. 长沙:中南林业科技大学, 2011.
Qin Q L. Ultraviolet mutagenesis of Trichoderma reesei and selection of mutant strains with high activity of cellulase. Changsha: Central South University of Forestry and Technology, 2011.
[31] 王芳. 里氏木霉的复合诱变及酶系优化. 长沙:中南林业科技大学, 2015.
Wang F. Compound mutagenesis and enzyme optimization of Trichoderma reesei. Changsha: Central South University of Forestry and Technology, 2015.
[32] Singh A, Taylor L E, Vander Wall T A, et al. Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Advances, 2015,33(1):142-154.
[33] Stricker A R, Grosstessner-Hain K, Würleitner E, et al. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryotic Cell, 2006,5(12):2128-2137.
pmid: 17056741
[34] Dos Santos Castro L, Antoniêto A C C, Pedersoli W R, et al. Expression pattern of cellulolytic and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1 are affected by carbon source in Trichoderma reesei. Gene Expression Patterns, 2014,14(2):88-95.
pmid: 24480777
[35] Wang M Y, Zhang M L, Li L, et al. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnology for Biofuels, 2017,10:99.
[36] Mello-de-Sousa, T M., Gorsche R, et al. A truncated form of the carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei. Biotechnology for Biofuels, 2014,7(1):129.
[37] Long C N, Cheng Y J, Cui J J, et al. Enhancing cellulase and hemicellulase production in Trichoderma orientalis EU7-22 via knockout of the creA. Molecular Biotechnology, 2018,60(1):55-61.
[38] Rassinger A, Gacek-Matthews A, Strauss J, et al. Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator. Fungal Biology and Biotechnology, 2018,5:15.
pmid: 30151221
[39] Su X Y, Chu X, Dong Z Y. Identification of elevated transcripts in a Trichoderma reesei strain expressing a chimeric transcription activator using suppression subtractive hybridization. World Journal of Microbiology and Biotechnology, 2009,25:1075-1084.
[40] Han L J, Tan Y S, Ma W, et al. Precision Engineering of the Transcription Factor Cre1 in Hypocrea jecorina (Trichoderma reesei) for Efficient Cellulase. Frontiers in Bioengineering and Biotechnology, 2020,8:852.
[41] Zhang X Y, Li Y H, Zhao X Q, et al. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresource Technology, 2017,223:317-322.
pmid: 27818160
[42] 王榕, 宫莉, 姚斌, 等. 利用RNAi抑制cre1基因转录提高里氏木霉表达纤维素酶. 食品工业科技, 2016,37(11):189-194.
Wang R, Gong L, Yao B, et al. Improving cellulase expression of Trichoderma reesei by RNAi-mediated repression of cre1 transcription. Science and Technology of Food Industry, 2016,37(11):189-194.
[43] Mach-Aigner A R, Pucher M E, Steiger M G, et al. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Applied and Environmental Microbiology, 2008,74(21):6554-6562.
[44] Wang S W, Liu G, Wang J, et al. Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. Genetics and Molecular Biology of Industrial Organisms, 2013,40(6):633-641.
[45] Gudynaite-Savitch L, White T C. Fungal biotechnology for industrial enzyme production: focus on (Hemi) cellulase production strategies, advances and challenges. Gene expression systems in fungi: advancements and applications. Cham: Springer, 2016: 395-439.
[46] Derntl C, Gudynaite-Savitch L, Calixte S, et al. Mutation of the xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnology for Biofuels, 2013,6:62.
doi: 10.1186/1754-6834-6-62 pmid: 23638967
[47] Ellila S, Fonseca L, Uchima C, et al. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnology for Biofuels, 2017,10:30.
pmid: 28184245
[48] Hasper A A, Trindade L M, van der Veen D, et al. Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology, 2004,150(5):1367-1375.
[49] Derntl C, Mach R L, Mach-Aigner A R. Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei. Biotechnology for Biofuels, 2019,12:231.
pmid: 31583017
[50] Aro N, Saloheimo A, Ilmen M, et al. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. Journal of Biological Chemistry, 2001,276(26):24309-24314.
[51] Aro N, Ilmen M, Saloheimo A, et al. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Applied and Environmental Microbiology, 2003,69(1):56-65.
[52] Cao Y L, Zheng F L, Wang L, et al. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Molecular Microbiology, 2017,105(1):65-83.
[53] Wang L, Lv X X, Cao Y L, et al. A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Applied Microbiology and Biotechnology, 2019,103(11):4511-4523.
[54] Hakkinen M, Valkonen M J, Westerholm-Parvinen A, et al. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnology for Biofuels, 2014,7(1):14.
pmid: 24472375
[55] Zhang J J, Chen Y M, Wu C, et al. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. Journal of Biological Chemistry, 2019,294(48):18435-18450.
[56] Sheir-Neiss G, Montenecourt B S. Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Applied Microbiology and Biotechnology, 1984,20(1):46-53.
[57] Chen Y M, Wu C, Fan X J, et al. Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. Biotechnology for Biofuels, 2020,13:62.
[58] Liu R, Chen L, Jiang Y P, et al. A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei. Biotechnology for Biofuels, 2017,10:194.
[59] Kubicek C P, Starr T L, Glass N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology, 2014,52:427-451.
pmid: 25001456
[60] DeCastro M E, Rodríguez-Belmonte E, González-Siso M I. Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Frontiers in Microbiology, 2016,7:1521.
pmid: 27729905
[61] 彭静静. 耐热纤维素酶的研究进展. 安徽农业科学, 2014,42(1):336-338.
Peng J J. Research progress of thermostable cellulase. Journal of Anhui Agricultural Sciences, 2014,42(1):336-338.
[62] Jiang X Z, Du J W, He R N, et al. Improved production of majority cellulases in Trichoderma reesei by integration of cbh1 gene from Chaetomium thermophilum. Frontiers in Microbiology, 2020,11:1633.
pmid: 32765463
[63] Meng Q S, Liu C G, Zhao X Q, et al. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. Journal of Biotechnology, 2018,285:56-63.
doi: 10.1016/j.jbiotec.2018.09.001 pmid: 30194052
[64] Bischof R, Seiboth B. Molecular tools for strain improvement of Trichoderma spp. In: Gupta V G, Schmoll M, Herrera-Estrella A, Upadhyay R S, Druzhinina I, Tuohy M, editors. Biotechnology and biology of Trichoderma. Oxford: Elsevier, 2014: 179-191.
[65] Du F, Wolger E, Wallace L, et al. Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Applied Biochemistry and Biotechnology, 2010,161(16-8):313-317.
[66] Ma L, Zhang J, Zou G, et al. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme and Microbial Technology, 2011,49(4):366-371.
doi: 10.1016/j.enzmictec.2011.06.013 pmid: 22112562
[67] 朱姚. 基因操作构建里氏木霉RUT-C30蛋白酶缺陷株. 上海:华东理工大学, 2013.
Zhu Y. Construction a protease deficient strain Trichoderma reesei RUT-C30 by genetical modification. Shanghai: East China University of Science and Technology, 2013.
[68] Xue X L, Wu Y L, Qin X, et al. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei fusion: expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities . The 14th China-Japan-Korea Joint Symposium on Enzyme Engineering Conference Proceeding. 北京:中国微生物学会酶工程专业委员会, 2016: 2.
[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[3] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[4] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[5] 孟庆婷, 汤斌. 碳阻遏因子CRE对匍枝根霉产纤维素酶调控作用的研究[J]. 中国生物工程杂志, 2016, 36(3): 31-37.
[6] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.
[7] 黄俊, 黎贞崇, 吴仁智, 陈英, 陈东, 黄日波. 基因组重排技术选育乙醇高产菌株[J]. 中国生物工程杂志, 2014, 34(7): 56-62.
[8] 吴琼, 王猛, 李雅乾, 高士刚, 余传金, 孙佳楠, 张泰龙, 陈捷. 雷公根叶斑病菌SJTU59纤维素酶液的性质研究及纤维素酶基因保守区域的分析[J]. 中国生物工程杂志, 2014, 34(3): 61-67.
[9] 杨华军, 邹少兰, 刘成, 马媛媛, 马向霞, 洪解放. 纤维素酶在酿酒酵母中的表达研究[J]. 中国生物工程杂志, 2014, 34(06): 75-83.
[10] 蔡晶晶, 段学辉, 谢亮, 郑希帆, 沈江涛. 三菌混合固态发酵产纤维素酶[J]. 中国生物工程杂志, 2013, 33(7): 57-63.
[11] 张砚君, 刘荣, 张梦楠, 苗庆芳, 甄永苏, 熊冬生, 张益芝. IL3融合蛋白稳定性分析、改造及活性研究[J]. 中国生物工程杂志, 2013, 33(3): 117-122.
[12] 顾芮萌, 李勇昊, 田朝光. 粗糙脉孢菌(Neurospora crassa)纤维素酶液体发酵培养基的优化[J]. 中国生物工程杂志, 2012, 32(03): 76-82.
[13] 陈科, 黄潇, 路蕾, 邢芸, 侯景, 吴洁, 刘景晶. 不同调控元件驱动下菊欧氏杆菌纤维素酶celY基因在大肠杆菌中表达的研究[J]. 中国生物工程杂志, 2012, 32(02): 24-28.
[14] 凌敏 梁纲 覃拥灵 李楠 梁智群. 康氏木霉纤维素酶转录因子ACEII与外切纤维二糖水解酶基因 I(cbh1)启动子的结合分析[J]. 中国生物工程杂志, 2009, 29(10): 60-63.
[15] 尹娟,袁兴中,汤琳. 生物传感器检测纤维素酶活性及基因表达的研究进展[J]. 中国生物工程杂志, 2009, 29(01): 86-92.