Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 86-92    DOI: 10.13523/j.cb.20171012
综述     
CRISPR/Cas9系统研究进展
栗晓飞, 曹英秀, 宋浩
天津大学化工学院 系统生物工程教育部重点实验室 天津化学化工协同创新中心合成生物学平台 天津 300072
CRISPR/Cas9 System:A Recent Progress
LI Xiao-fei, CAO Ying-xiu, SONG Hao
School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering(Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin University, Tianjin 300072, China
 全文: PDF(557 KB)   HTML
摘要: CRISPR/Cas9系统的发展彻底改变了人们编辑DNA序列和调控目标基因表达水平的能力,从而为生物体的精确基因组编辑提供了有力的工具。简化后的CRISPR/Cas9系统由两部分组成:Cas9蛋白和sgRNA。其作用原理为sgRNA通过自身的Cas9把手与Cas9蛋白形成Cas9-sgRNA复合体,Cas9-sgRNA复合体中sgRNA的碱基互补配对区序列与目标基因的靶序列通过碱基互补配对原则进行配对结合,Cas9利用自身的核酸内切酶活性对目标DNA序列进行切割。与传统的基因组编辑技术相比,CRISPR/Cas9系统具有几大明显的优势:易用性、简便性、低成本、可编程性以及可同时编辑多个基因。CRISPR/Cas9基因组编辑技术以及衍生出来的CRISPRi和CRISPRa基因表达调控技术已经广泛应用于多种真核和原核生物中。综述了CRISPR/Cas9系统的起源、作用机理、在生物体中的应用和其衍生出的技术,并概述了其脱靶效应和未来前景。
关键词: CRISPR/Cas9CRISPRiCRISPRa基因表达调控基因组编辑    
Abstract: The development of CRISPR/Cas9 system has revolutionized our ability to edit DNA and to modulate expression levels of target genes, thus providing powerful tools to accelerate the precise genome engineering of a wide range of organisms. The developed CRISPR/Cas9 system consists of the Cas9 protein and a programmed sgRNA. The Cas9 protein binds to the Cas9 handle of sgRNA and forms a Cas9-sgRNA complex. Then, the Cas9-sgRNA complex binds to specific DNA targets by Watson-Crick base pairing between the sgRNA and the DNA target, and the DNA will be cleaved due to the nuclease activity of the Cas9 protein. Compared with the traditional genome editing technologies, CRISPR/Cas9 system has several obvious advantages, inculding ease of use, simplicity, low cost, programmed and multiple genes editing. CRISPR/Cas9 genome editing technology and the derived CRISPRi and CRISPRa gene expression regulation techniques have been widely used in a variety of eukaryotic and prokaryotic organisms. Here, the origin and mechanism of CRISPR/Cas9 system, its application in organisms and its derived technology were reviewed, and its off-target effect and future prospects were outlined.
Key words: CRISPR/Cas9    CRISPRi CRISPRa    Genome editing    Gene expression regulation
收稿日期: 2017-05-12 出版日期: 2017-10-25
ZTFLH:  Q789  
基金资助: 国家自然科学基金(21376174)、天津市自然科学基金(13JCYBJC40700)资助项目
通讯作者: 宋浩,hsong@tju.edu.cn     E-mail: hsong@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
栗晓飞
曹英秀
宋浩

引用本文:

栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.

LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress. China Biotechnology, 2017, 37(10): 86-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171012        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/86

[1] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213):1258096.
[2] Charpentier E, Marraffini L A. Harnessing CRISPR-Cas9 immunity for genetic engineering. Current Opinion in Microbiology, 2014, 19(7):114-119.
[3] Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385):331-338.
[4] Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 2017, 15(3):169-182.
[5] Perez-Pinera P, Kocak D D, Vockley C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 2013, 10(10):973-976.
[6] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183.
[7] Maeder M L, Linder S J, Cascio V M, et al. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 2013, 10(10):977-979.
[8] Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2):442-451.
[9] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4):347-355.
[10] Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12(4):326-328.
[11] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12):5429-5433.
[12] Mojica F J, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology, 2000, 36(1):244-246.
[13] Mojica F J, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2):174-182.
[14] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3):653-663.
[15] Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(8):2551-2561.
[16] Makarova K S, Grishin N V, Shabalina S A, et al. A putative RNA-interference-based immune system in prokaryotes:computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 2006, 1(1):7.
[17] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.
[18] Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909):1843-1845.
[19] Brouns S J, Jore M M, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891):960-964.
[20] Lander E S. The heroes of CRISPR. Cell, 2016, 164(1):18-28.
[21] Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
[22] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471(7340):602-607.
[23] Wang J, Li J, Zhao H, et al. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015, 163(4):840-853.
[24] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 2012, 109(39):E2579-E2586.
[25] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821.
[26] Shuman S, Glickman M S. Bacterial DNA repair by non-homologous end joining. Nature Reviews Microbiology, 2007, 5(11):852-861.
[27] Cui L, Bikard D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Research, 2016, 44(9):4243-4251.
[28] Li D, Qiu Z, Shao Y, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8):681-683.
[29] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823.
[30] DiCarlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7):4336-4343.
[31] Li W, Teng F, Li T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8):684-686.
[32] Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194(4):1029-1035.
[33] Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4):910-918.
[34] Shalem O, Sanjana N E, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nature Reviews Genetics, 2015, 16(5):299-311.
[35] Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-239.
[36] Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2):142-147.
[37] Jo Y I, Suresh B, Kim H, et al. CRISPR/Cas9 system as an innovative genetic engineering tool:Enhancements in sequence specificity and delivery methods. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2015, 1856(2):234-243.
[38] Mali P, Esvelt K M, Church G M. Cas9 as a versatile tool for engineering biology. Nature Methods, 2013, 10(10):957-963.
[39] Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(3):230-232.
[40] Ain Q U, Chung J Y, Kim Y H. Current and future delivery systems for engineered nucleases:ZFN, TALEN and PGEN. Journal of Controlled Release, 2015,205(5):120-127.
[41] Wong A S, Choi G C, Cui C H, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proceedings of the National Academy of Sciences, 2016, 113(9):2544-2549.
[42] Ding Q, Lee Y K, Schaefer E A, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 2013, 12(2):238-251.
[43] Mail P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
[44] Kim H, Kim J S. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 2014, 15(5):321-334.
[45] Hawking J S, Wong S, Peters J M, et al. Targeted transcriptional repression in bacteria using CRISPR interference(CRISPRi). CRISPR:Methods and protocols, 2015,1311(9):349-362.
[46] Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121):823-826.
[47] Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016, 533(7601):125-129.
[48] Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34(1):78-83.
[49] Hawkins J S, Wong S, Peters J M, et al. Targeted transcriptional repression in bacteria using CRISPR interference(CRISPRi). CRISPR:Methods and Protocols,2015,1311(9):349-362.
[50] Crook N C, Schmitz A C, Alper H S. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synthetic Biology, 2013, 3(5):307-313.
[51] Choudhary E, Thakur P, Pareek M, et al. Gene silencing by CRISPR interference in mycobacteria. Nature Communications, 2015,6(2):6267.
[52] Larson M H, Gilbert L A, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8(11):2180-2196.
[53] Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013, 41(15):7429-7437.
[54] Juhas M, Eberl L, Church G M. Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends in Biotechnology, 2012, 30(11):601-607.
[55] Ji W, Lee D, Wong E, et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synthetic Biology, 2014, 3(12):929-931.
[56] Farzadfard F, Perli S D, Lu T K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2013,2(10):604-613.
[57] Cobb R E, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2014, 4(6):723-728.
[58] Mimee M, Tucker A C, Voigt C A, et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Systems, 2015, 1(1):62-71.
[59] Konermann S, Brigham M D, Trevino A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536):583-588.
[60] Farzadfard F, Perli S D, Lu T K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2013, 2(10):604-613.
[61] Dominguez A A, Lim W A, Qi L S. Beyond editing:repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2016, 17(1):5-15.
[62] Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9):839-843.
[63] Jackson R N, Golden S M, van Erp P B, et al. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science, 2014, 345(6203):1473-1479.
[64] Doench J G, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2):184-191.
[65] Tsai S Q, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6):569-576.
[66] Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6):577-582.
[67] Kleinstiver B P, Pattanayak V, Prew M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587):490-495.
[68] Tycko J, Myer V E, Hsu P D. Methods for optimizing CRISPR-Cas9 genome editing specificity. Molecular Cell, 2016, 63(3):355-370.
[69] Jiang F, Doudna J A. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1):505-529.
[70] Jiang W, Marraffini L A. CRISPR-Cas:new tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 2015, 69:209-228.
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[4] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[5] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[6] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[7] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[8] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[9] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[10] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[11] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[12] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[13] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[14] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[15] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.