Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 91-99    DOI: 10.13523/j.cb.2112044
综述     
酵母表面展示体系的构建及在纤维素降解中的应用*
刘明珠1,张良1,郭芳1,李春1,2,3,冯旭东1,**()
1 北京理工大学化学与化工学院 化学工程系 生物化工研究所 医药分子科学与制剂工程工业 和信息化部重点实验室 北京 100081
2 清华大学化学工程系 工业生物催化教育部重点实验室 北京 100084
3 清华大学合成与系统生物学研究中心 北京 100084
Construction of Yeast Surface Display System and Application in Cellulose Degrading
LIU Ming-zhu1,ZHANG Liang1,GUO Fang1,LI Chun1,2,3,FENG Xu-dong1,**()
1 Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
3 Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
 全文: PDF(1536 KB)   HTML
摘要:

纤维素是来源广泛且储量较大的低成本可再生资源,但其结构致密难以利用。目前降解纤维素需要多种纤维素酶协作,而游离纤维素酶成本高、难以重复利用等问题限制了其广泛应用。利用酵母表面展示技术,可以将多个纤维素酶分别与锚定蛋白融合后共展示在细胞表面,从而构建酵母表面展示纤维素酶体系。这一体系可高效降解纤维素,一方面可以充分发挥表面展示的优点,如易回收、稳定性好、操作简单、成本低;另一方面可以将纤维素有效地降解为葡萄糖,并具有代谢产生物乙醇的潜力。阐述了酵母表面展示体系的构建原则,总结了影响展示体系效率的因素,介绍了这一技术在降解纤维素中的应用,为构建高效酵母表面展示纤维素酶体系及其他多酶体系提供参考。

关键词: 酵母表面展示纤维素酶锚定蛋白    
Abstract:

Cellulose is a low-cost and renewable resource with abundant reserves, but it is difficult to be used because of its compact structure. Currently, the degradation of cellulose requires the cooperation of a variety of cellulases, but the high cost and the difficulty of re-use of free cellulase have limited its wide application. Yeast surface display technology can display multiple cellulase enzymes on the cell surface after being fused with the anchoring protein, so that a yeast surface display cellulase system could be constructed. This system can degrade cellulose efficiently. On the one hand, it has the advantages of surface display, such as easy recycling, good stability, simple operation, and low cost; on the other hand, it can also degrade cellulose into glucose effectively, and has the potential to produce bioethanol by metabolism. The paper summarizes the construction principles of a yeast surface display system, and divides yeast surface display systems into direct display systems and indirect display systems according to the different anchoring methods of exogenous proteins. The direct display system is that the exogenous protein is directly connected to the cell through the anchor protein. Indirect display systems are linked to cells through exogenous proteins by means of scaffolds. Factors affecting the efficiency of the display system mainly include cell type, anchor protein, scaffold, environmental factors and promoter type. The surface display system consists of GPI system, Pir system and FlO1 system according to different anchor proteins. The yeast surface display cellulase system can ferment cellulose to produce ethanol, and a lot of progress has been made so far, which provides a reference for the construction of an efficient yeast surface display cellulase system and other multi-enzyme systems. The review describes the construction principles of a yeast surface display system, summarizes the influence of major factors on the display system, and introduces the application of this technology in the degradation of cellulose. It provides guidance for the construction of high-efficiency yeast surface display of cellulase and other multi-enzyme systems.

Key words: Yeast surface display    Cellulase    Anchor protein
收稿日期: 2021-12-19 出版日期: 2022-06-17
ZTFLH:  Q814  
基金资助: *北京市科技新星计划(Z191100001119099)
通讯作者: 冯旭东     E-mail: xd.feng@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘明珠
张良
郭芳
李春
冯旭东

引用本文:

刘明珠,张良,郭芳,李春,冯旭东. 酵母表面展示体系的构建及在纤维素降解中的应用*[J]. 中国生物工程杂志, 2022, 42(5): 91-99.

LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading. China Biotechnology, 2022, 42(5): 91-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2112044        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/91

组分 聚合度 分子量
/kDa
相对含量
/%
相对
摩尔比
β-1, 3-葡聚糖 1 500 240 50 1.0
β-1, 6-葡聚糖 150 24 10 2
甘露糖蛋白 100~200 40 1.2~2.4
几丁质 120 25 1~3 0.1~0.3
表1  酿酒酵母细胞壁的主要成分
图1  酵母表面展示纤维素酶体系示意图
图2  典型的酵母表面展示系统
作者 参考文献 年份 展示方式 锚定蛋白 底物类型 底物浓度/(g/L) 乙醇产量/(g/L) ESCY/%
Beak等 [44] 2012 直接展示 Agα PASC 10 2.21 42.77
Fan等 [20] 2012 间接展示 Aga PASC 10 1.091 22.01
Tsai等 [45] 2013 间接展示 Aga PASC 10 1.9 38.33
Yamada等 [1] 2013 直接展示 Agα PASC 20 4.3 43.38
Kim等 [46] 2013 间接展示 Aga PASC 10 1.86 37.52
Liang等 [27] 2014 直接展示 SED1 Avicel 10 1.4 28.24
Liu等 [47] 2015 直接展示 SED1 PASC 10 2.9 58.51
Fan等 [48] 2016 间接展示 Aga CMC 10 3.26 65.77
Fan等 [48] 2016 间接展示 Aga PASC 10 1.09 21.99
Liu等 [49] 2016 直接展示 SED1 PASC 20 6.7 67.59
Grimm等 [37] 2018 间接展示 Aga Avicel 10 1.412 28.49
Anandharaj等 [22] 2020 间接展示 多种 Avicel 10 3.09 62.35
Anandharaj等 [22] 2020 间接展示 多种 PASC 20 8.61 86.86
表2  酵母表面展示纤维素酶体系用于发酵乙醇
[1] Yamada R, Nakatani Y, Ogino C, et al. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express, 2013, 3: 34.
doi: 10.1186/2191-0855-3-34
[2] Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology, 2016, 42: 169-177.
doi: S0958-1669(16)30140-9 pmid: 27318259
[3] Smith M R, Gao H, Prabhu P, et al. Elucidating structure-performance relationships in whole-cell cooperative enzyme catalysis. Nature Catalysis, 2019, 2 (9): 809-819.
doi: 10.1038/s41929-019-0321-8
[4] Hossain S A, Rahman S R, Ahmed T, et al. An overview of yeast cell wall proteins and their contribution in yeast display system. Asian Journal of Medical and Biological Research, 2020, 5(4): 246-257.
doi: 10.3329/ajmbr.v5i4.45261
[5] Seo M J, Schmidt Dannert C. Organizing multi-enzyme systems into programmable materials for biocatalysis. Catalysts, 2021, 11(4): 409.
doi: 10.3390/catal11040409
[6] 冯旭东, 李春. 酶的改造及其催化工程应用. 化学进展, 2015, 27(11): 1649-1657.
doi: 10.7536/PC150419
Feng X D, Li C. The improvement of enzyme properties and its catalytic engineering strategy. Progress in Chemistry, 2015, 27(11): 1649-1657.
doi: 10.7536/PC150419
[7] Salgaonkar M, Nadar S S, Rathod V K. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. International Journal of Biological Macromolecules, 2018, 113: 464-475.
doi: S0141-8130(17)34734-7 pmid: 29458106
[8] Asghar A, Iqbal N, Noor T, et al. Efficient one-pot synthesis of a hexamethylenetetramine-doped Cu-BDC metal-organic framework with enhanced CO2 adsorption. Nanomaterials (Basel, Switzerland), 2019, 9(8): 1063.
[9] Trobo Maseda L, H Orrego A, Guisan J M, et al. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: glycosylation of resveratrol 3-O-β-D-glucoside. International Journal of Biological Macromolecules, 2020, 157: 510-521.
doi: S0141-8130(20)32982-2 pmid: 32344088
[10] Thygesen A, Oddershede J, Lilholt H, et al. On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 2005, 12(6): 563-576.
doi: 10.1007/s10570-005-9001-8
[11] Yamada R, Hasunuma T, Kondo A. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnology Advances, 2013, 31(6): 754-763.
doi: 10.1016/j.biotechadv.2013.02.007
[12] Ellis G A, Klein W P, Lasarte-Aragonés G, et al. Artificial multienzyme scaffolds: pursuing in vitro substrate channeling with an overview of current progress. ACS Catalysis, 2019, 9(12): 10812-10869.
doi: 10.1021/acscatal.9b02413
[13] Bae J G, Kuroda K, Ueda M. Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Applied and Environmental Microbiology, 2015, 81(1): 59-66.
doi: 10.1128/AEM.02864-14
[14] Bischof R H, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 2016, 15(1): 106.
doi: 10.1186/s12934-016-0507-6 pmid: 27287427
[15] Oh E J, Jin Y S. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Research, 2020, 20(1): foz089.
doi: 10.1093/femsyr/foz089
[16] Andreu C, del Olmo M L. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Applied Microbiology and Biotechnology, 2018, 102(6): 2543-2561.
doi: 10.1007/s00253-018-8827-6
[17] Liu X, Cheng J, Zhang G, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nature Communications, 2018, 9: 448.
doi: 10.1038/s41467-018-02883-z
[18] Liang B, Li L, Tang X J, et al. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosensors and Bioelectronics, 2013, 45: 19-24.
doi: 10.1016/j.bios.2013.01.050 pmid: 23454338
[19] Tabañag I D F, Chu I M, Wei Y H, et al. The role of yeast-surface-display techniques in creating biocatalysts for consolidated BioProcessing. Catalysts, 2018, 8(3): 94.
doi: 10.3390/catal8030094
[20] Fan L H, Zhang Z J, Yu X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. PNAS, 2012, 109(33): 13260-13265.
doi: 10.1073/pnas.1209856109
[21] Tanaka T, Matsumoto S, Yamada M, et al. Display of active beta-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Applied Microbiology and Biotechnology, 2013, 97(10): 4343-4352.
doi: 10.1007/s00253-013-4733-0
[22] Anandharaj M, Lin Y J, Rani R P, et al. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2385-2394.
[23] Yang X Y, Tang H T, Song M H, et al. Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18(1): 85.
doi: 10.1186/s12934-019-1133-x
[24] Yamada R, Taniguchi N, Tanaka T, et al. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories, 2010, 9: 32.
doi: 10.1186/1475-2859-9-32
[25] Apiwatanapiwat W, Murata Y, Kosugi A, et al. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Applied Microbiology and Biotechnology, 2011, 90(1): 377-384.
doi: 10.1007/s00253-011-3115-8 pmid: 21327413
[26] Artzi L, Bayer E A, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 2017, 15 (2): 83-95.
doi: 10.1038/nrmicro.2016.164 pmid: 27941816
[27] Liang Y Y, Si T, Ang E L, et al. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2014, 80(21): 6677-6684.
doi: 10.1128/AEM.02070-14
[28] Fan S Q, Liang B, Xiao X X, et al. Controllable display of sequential enzymes on yeast surface with enhanced biocatalytic activity toward efficient enzymatic biofuel cells. Journal of the American Chemical Society, 2020, 142(6): 3222-3230.
doi: 10.1021/jacs.9b13289
[29] Cunha J T, Romaní A, Inokuma K, et al. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnology for Biofuels, 2020, 13: 138.
doi: 10.1186/s13068-020-01780-2
[30] Camattari A, Goh A, Yip L Y, et al. Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microbial Cell Factories, 2016, 15(1): 139.
doi: 10.1186/s12934-016-0540-5 pmid: 27515025
[31] Liu X Y, Chi Z, Liu G L, et al. Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 2010, 12(5): 469-476.
doi: 10.1016/j.ymben.2010.04.004
[32] Ni X M, Yue L X, Chi Z M, et al. Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Marine Biotechnology (New York), 2009, 11( 1): 81-89.
[33] Liu Z, Inokuma K, Ho S H, et al. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2017, 114(6): 1201-1207.
doi: 10.1002/bit.26252
[34] Liu G L, Yue L X, Chi Z, et al. The surface display of the alginate lyase on the cells of Yarrowia lipolytica for hydrolysis of alginate. Marine Biotechnology, 2009, 11(5): 619-626.
doi: 10.1007/s10126-009-9178-1
[35] Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010, 88(1): 381-388.
doi: 10.1007/s00253-010-2784-z
[36] Wang X D, Feng X D, Lv B, et al. Enhanced yeast surface display of β-glucuronidase using dual anchor motifs for high-temperature glycyrrhizin hydrolysis. AIChE Journal, 2019, 65(9): e16629.
[37] Grimm A R, Sauer D F, Polen T, et al. A whole cell E. coli display platform for artificial metalloenzymes: poly(phenylacetylene) production with a rhodium-nitrobindin metalloprotein. ACS Catalysis, 2018, 8(3): 2611-2614.
doi: 10.1021/acscatal.7b04369
[38] Sato H, Hayashi T, Ando T, et al. Hybridization of modified-heme reconstitution and distal histidine mutation to functionalize sperm whale myoglobin. Journal of the American Chemical Society, 2004, 126(2): 436-437.
doi: 10.1021/ja038798k
[39] Onoda A, Fukumoto K, Arlt M, et al. A rhodium complex-linked β-barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chemical Communications (Cambridge, England), 2012, 48(78): 9756-9758.
doi: 10.1039/c2cc35165j
[40] Grimm A R, Sauer D F, Davari M D, et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis. ACS Catalysis, 2018, 8(4): 3358-3364.
doi: 10.1021/acscatal.7b03652
[41] Dong M S, Li T P, Li S H, et al. Expression and enzymatic characterization of rice α-galactosidase II displayed on yeast cell surface. Process Biochemistry, 2019, 81: 57-62.
doi: 10.1016/j.procbio.2019.03.016
[42] Dong M S, Gong Y, Guo J, et al. Optimization of production conditions of rice α-galactosidase II displayed on yeast cell surface. Protein Expression and Purification, 2020, 171: 105611.
doi: 10.1016/j.pep.2020.105611
[43] Inokuma K, Hasunuma T, Kondo A. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnology for Biofuels, 2014, 7(1): 8.
doi: 10.1186/1754-6834-7-8
[44] Baek S H, Kim S, Lee K, et al. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme and Microbial Technology, 2012, 51(6-7): 366-372.
doi: 10.1016/j.enzmictec.2012.08.005
[45] Tsai S L, DaSilva N A, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synthetic Biology, 2013, 2(1): 14-21.
doi: 10.1021/sb300047u
[46] Kim S, Baek S H, Lee K, et al. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microbial Cell Factories, 2013, 12: 14.
doi: 10.1186/1475-2859-12-14
[47] Liu Z, Inokuma K, Ho S H, et al. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnology for Biofuels, 2015, 8: 162.
doi: 10.1186/s13068-015-0344-6
[48] Fan L H, Zhang Z J, Mei S, et al. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnology for Biofuels, 2016, 9: 137.
doi: 10.1186/s13068-016-0554-6
[49] Liu Z, Ho S H, Sasaki K, et al. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production. Scientific Reports, 2016, 6: 24550.
doi: 10.1038/srep24550
[50] Tabañag I D F, Chu I M, Wei Y H, et al. Ethanol production from hemicellulose by a consortium of different genetically-modified Sacharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89: 15-25.
doi: 10.1016/j.jtice.2018.04.029
[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[3] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[4] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[5] 张莹莹,汤斌,堵国成. 匍枝根霉纤维二糖合成酶胞内糖基供体的初探及结构功能研究[J]. 中国生物工程杂志, 2018, 38(4): 38-45.
[6] 孟庆婷, 汤斌. 碳阻遏因子CRE对匍枝根霉产纤维素酶调控作用的研究[J]. 中国生物工程杂志, 2016, 36(3): 31-37.
[7] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.
[8] 谢志丹, 范稳, 贾东晨, 杨娜, 夏振远, 乔敏. 枯草芽胞杆菌芽胞表面展示研究进展[J]. 中国生物工程杂志, 2014, 34(8): 105-111.
[9] 吴琼, 王猛, 李雅乾, 高士刚, 余传金, 孙佳楠, 张泰龙, 陈捷. 雷公根叶斑病菌SJTU59纤维素酶液的性质研究及纤维素酶基因保守区域的分析[J]. 中国生物工程杂志, 2014, 34(3): 61-67.
[10] 杨华军, 邹少兰, 刘成, 马媛媛, 马向霞, 洪解放. 纤维素酶在酿酒酵母中的表达研究[J]. 中国生物工程杂志, 2014, 34(06): 75-83.
[11] 蔡晶晶, 段学辉, 谢亮, 郑希帆, 沈江涛. 三菌混合固态发酵产纤维素酶[J]. 中国生物工程杂志, 2013, 33(7): 57-63.
[12] 顾芮萌, 李勇昊, 田朝光. 粗糙脉孢菌(Neurospora crassa)纤维素酶液体发酵培养基的优化[J]. 中国生物工程杂志, 2012, 32(03): 76-82.
[13] 陈科, 黄潇, 路蕾, 邢芸, 侯景, 吴洁, 刘景晶. 不同调控元件驱动下菊欧氏杆菌纤维素酶celY基因在大肠杆菌中表达的研究[J]. 中国生物工程杂志, 2012, 32(02): 24-28.
[14] 凌敏 梁纲 覃拥灵 李楠 梁智群. 康氏木霉纤维素酶转录因子ACEII与外切纤维二糖水解酶基因 I(cbh1)启动子的结合分析[J]. 中国生物工程杂志, 2009, 29(10): 60-63.
[15] 尹娟,袁兴中,汤琳. 生物传感器检测纤维素酶活性及基因表达的研究进展[J]. 中国生物工程杂志, 2009, 29(01): 86-92.