Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 116-129    DOI: 10.13523/j.cb.2112003
技术情报     
DNA数据存储的科研概况国际对比与分析
张大璐1,葛奇2,冯一博2,陈为刚2,3,*()
1.中国生物技术发展中心 北京 100039
2.天津大学微电子学院 天津 300072
3.天津大学教育部合成生物学前沿科学中心 天津 300072
Comparison and Analysis on Scientific Research Programs on DNA Data Storage
ZHANG Da-lu1,GE Qi2,FENG Yi-bo2,CHEN Wei-gang2,3,*()
1. China National Center for Biotechnology Development, Beijing 100039, China
2. School of Microelectronics, Tianjin University, Tianjin 300072, China
3. Frontiers Science Center for Synthetic Biology of Ministry of Education, Tianjin University, Tianjin 300072, China
 全文: PDF(1057 KB)   HTML
摘要:

全球数据量快速增长,成为数字经济发展的核心引擎,但传统数据存储介质受到功耗、体积、成本等限制,难以满足不断增长的数据存储需求。以脱氧核糖核酸(deoxyribonucleic acid,DNA)分子作为存储介质的新型存储方式引起了国内外高度重视,世界主要国家均对其研究进行了顶层规划,部署了一系列重要科研计划。但是,DNA数据存储作为一个新兴交叉研究领域,其发展的“源”与“流”仍存在需要深入分析的问题。针对该问题,从信息、半导体与合成生物学交叉融合的角度深入挖掘DNA数据存储发展的源头,对近年来国际上主要国家与地区在DNA数据存储领域的发展规划进行分析归纳,梳理国内外的科研项目规划布局,尤其是美国“半导体合成生物学联盟”推动的基础研究项目、美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)与美国情报高级研究计划局(Intelligence Advanced Research Projects Activity,IARPA)推动的面向应用的集中攻关项目、欧盟的地平线2020计划以及我国的重点研发计划等。通过比较可发现,美国主要采用政府部门主导、应用目标导向的研究模式,欧盟与我国在“十三五”期间及时跟进;我国在“十四五”期间设立了重点研发计划“生物与信息融合(BT与IT融合)”,致力于推动DNA数据存储等领域的发展,实现DNA数据存储发展带动生化仪器乃至生物经济、数字经济的发展。探索DNA数据存储发展的“源”和“流”,为从事该领域的研究者识别真正制约该领域发展的“真问题”提供参考,也为科技管理部门研判DNA数据存储的国际发展趋势提供参考。

关键词: 数据存储DNA数据存储合成生物学半导体合成生物学    
Abstract:

The explosive growth of global data has become an important engine for the development of the digital economy. However, traditional data storage media are limited by power consumption, volume and cost, and cannot meet the ever-increasing demand for data storage. The new storage method using deoxyribonucleic acid (DNA) molecule as storage medium has attracted great attention at home and abroad. Major countries in the world have carried out top-level planning for its research and deployed a series of important scientific research plans. However, DNA data storage is a new interdisciplinary research field, and its development “source” and “flow” still need to be deeply analyzed. To solve this problem, this paper explores the development “source” of DNA data storage from the perspective of fusion of information, semiconductor and synthetic biology, and analyzes and summarizes the development plan of DNA data storage in major countries and regions in the world in recent years. We present the layout of scientific research projects at home and abroad, particularly, the basic research program promoted by the Alliance for Semiconductor Synthetic Biology, the application-oriented intensive research program promoted by Defense Advanced Research Projects Agency (DARPA) and Intelligence Advanced Research Projects Activity (IARPA), the Horizon 2020 Program of the European Union, and the major research and development program of China. By comparison, it can be observed that the United States mainly adopts the government-led, application-oriented research mode, while the European Union and China follow up in time during the 13th Five-Year Plan period. During the 14th Five-year Plan period, China has set up the national key research and development program of “Fusion of the Biological Technology and Information Technology (BT and IT Fusion)”, which is committed to promoting the development of DNA data storage and related fields, and realizing the development of DNA data storage to drive the development of biochemical instruments, and even biological economy and digital economy. This paper explores the “source” and “flow” of the development of DNA data storage, and provides a reference for researchers to identify the “real” problems that really limit the development of this field, and also provides a reference for science and technology management departments to identify the international development trend in DNA data storage.

Key words: Data storage    DNA data storage    Synthetic biology    Semiconductor synthetic biology
收稿日期: 2021-12-01 出版日期: 2022-07-07
ZTFLH:  Q811  
通讯作者: 陈为刚     E-mail: chenwg@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张大璐
葛奇
冯一博
陈为刚

引用本文:

张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.

ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage. China Biotechnology, 2022, 42(6): 116-129.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2112003        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/116

资助方向 项目名称 起止时间 承担单位 经费/美元
DNA数据存储 基于DNA的电可读取存储器 2018.07-2022.06 加州大学戴维斯分校 430 919
(包括内存) 华盛顿大学 292 875
埃默里大学 401 206
一种基于嵌合DNA的片上芯片纳米尺度存储系统 2018.10-2023.09 伊利诺伊大学厄本那香槟分校 2 000 000
基于纳米孔读取的高度可扩展的随机存取DNA数据存储 2018.08-2022.07 斯坦福大学 1 125 000
核酸存储器 2018.07-2023.06 博伊西州立大学 1 125 000
生物设计自动化 超大规模基因电路设计自动化 2018.10-2022.09 麻省理工学院 1 000 000
2018.10-2022.09 明尼苏达大学双城分校 1 000 000
2018.10-2022.09 东北大学 354 375
生物计算 用于分子通信和内存的基于氧化还原的生物电子学 2018.07-2022.06 马里兰大学帕克分校 1 125 000
YeastOns:建立在相互通信的酵母细胞中的神经网络 2018.08-2022.07 得克萨斯大学奥斯汀分校 337 683
2018.08-2021.07 华盛顿大学 337 550
2018.08-2022.07 约翰霍普金斯大学 449 818
用于集体计算的基于心肌细胞的耦合振荡网络 2018.07-2022.06 圣母大学 1 125 000
表1  首批SemiSynBio项目立项情况(2018年)
资助方向 项目名称 起止时间 承担单位 经费/美元
DNA数据存储 DNA 突变重写存储(DMOS) 2020.08-2023.07 北卡罗来纳州立农业与技术大学 1 500 000
面向DNA数据存储系统设计的写入、访问、读取和保护(WARP)驱动器 2020.08-2023.07 北卡罗来纳州立大学 150 000
用于大规模测试和远程部署的混合生物电子微流控存储器阵列 2020.10-2023.09 波士顿大学 1 497 580
基于DNA的高密度信息存储器和快速读出的分子密码技术 2020.10-2023.09 亚利桑那州立大学 1 516 000
生物与电子混合系统 混合可编程纳米生物电子系统 2020.08-2023.07 佐治亚理工学院 1 500 000
具有平面 DNA 纳米孔电极的可编程非生物-生物界面 2020.09-2023.08 麻省理工学院 1 500 000
混合生物膜半导体信息系统 2020.10-2023.09 布朗大学 1 500 000
迈向生物级低能耗的信息处理、存储、传感与生物接口 2020.12-2023.11 马萨诸塞大学 1 474 272
表2  第二批SemiSynBio-II立项情况(2019年)
资助方向 项目名称 起止时间 承担单位 经费/美元
信息理论与编码 DNA存储系统的编码研究 2016.07-2022.06 伊利诺伊大学厄本那香槟分校 500 000
纳米孔测序的信息论研究方法 2017.06-2022.05 华盛顿大学 750 000
加州大学洛杉矶分校 450 000
DNA数据存储的性能极限 2020.07-2023.06 伊利诺伊大学厄本那香槟分校 484 140
面向同步错误的数据处理策略 2020.10-2023.09 密歇根大学安娜堡分校 489 159
分子存储中的编码字符串重建问题 2020.10-2023.09 伊利诺伊大学厄本那香槟分校 250 000
普渡大学 231 463
字符串(trace)重构问题 2021.06-2025.05 哥伦比亚大学 1 200 000
存储系统与方法 活体DNA存储信道的噪声特征分析与消除 2018.10-2022.09 加州理工学院 187 250
弗吉尼亚大学 312 749
闭环的硅-生物分子融合系统的合成与微流体的纳米孔接口 2018.10-2020.09 华盛顿大学 199 906
可扩展的DNA存档存储系统 2019.07-2020.06 Trove Labs 225 000
基于DNA的超大规模存储系统 2016.09-2020.08 北卡罗来纳州立大学 299 606
面向大容量实用DNA数据存储系统的热力学驱动设计方法 2019.10-2023.09 北卡罗来纳州立大学 1 216 000
新型合成方法 基于DNA的数据存储和计算材料 2020.05-2024.04 麻省理工学院 900 000
加密DNA的低成本、高通量、赛博物理融合的合成 2017.10-2022.09 加州大学河滨分校 1 039 063
直接自动从头合成长寡核苷酸 2020.09-2023.08 加州大学尔湾分校 284 936
表3  NSF资助的DNA数据存储研究项目
技术领域 目标 阶段1(24个月)具体要求 阶段2(24个月)具体要求
存储 设计实际应用性能的存储设备 去风险可伸缩的综合方法;开发设备;提供功能和性能的初步演示 进一步开发和改进以优化容量、写吞吐量和资源需求;交付满足实际效用指标的设备
检索 设计具有实用性能的检索装置 去风险可伸缩的排序方法;开发设备;提供功能和性能的初步演示 进一步开发和改进以优化读吞吐量和资源需求;交付满足实际效用指标的设备
信息操作系统 支持随机访问大规模文件的操作系统 开发计算工具和方法;提供基于模拟的功能和性能的初步演示 进一步开发和改进以优化索引、寻址和随机访问;交付满足实际效用指标的设备
表4  “MIST”项目中各技术领域
项目名称 起止时间 承担单位 经费/欧元
用于安全和DNA存储的编码(inCREASE) 2019.03-2024.02 慕尼黑工业大学(德国) 1 471 750
寡核苷酸档案-用于归档的智能DNA存储(OLIGOARCHIVE) 2019.10-2023.03 帝国理工大学(英国) 99 071 453
巴黎高等电信学院(法国) 52 571 125
HELIXWORKS公司(爱尔兰) 496 945
国家科学研究中心(法国) 981 600
DNA数据存储(DNA DS) 2019.12-2020.05 生物系统研究开发局(斯洛文尼亚) 71 429
面向可持续数字未来的DNA数据存储技术(DATANA) 2021.05-2023.04 生物系统研究开发局(斯洛文尼亚) 2 667 250
多路光编码和读出的DNA快速光驱动数据技术(DNA-FAIRYLIGHTS) 2021.09-2024.08 意大利研究院(意大利) 62 313 125
剑桥大学(英国) 495 405
生物材料合作研究协会中心(西班牙) 353 750
斯图加特大学(德国) 325 000
苏黎世联邦理工学院(瑞士) 315 000
慕尼黑工业大学(德国) 309 250
AB ANALITICA SRL(意大利) 185 625
DNA合成技术研发商(法国) 253 125
ELEMENTS SRL(意大利) 256 250
表5  欧盟DNA数据存储有关项目立项情况
项目来源(重点专项) 项目名称 执行周期 年度
合成生物学 使用合成DNA进行数据存储的技术研发 5年 2018年
合成生物学 DNA活字喷墨与阵列存储技术研究及示范系统 5年 2020年
合成生物学(青年项目) 多方协同合成基因信息安全存取方法研究 5年 2020年
变革性技术关键科学问题 DNA存储中的组合方法 5年 2020年
表6  “十三五”重点专项中与DNA信息存储直接相关的项目
任务名称 任务指南 执行周期 年度
基于DNA原理的信息存储系统开发 DNA分子信息存储的高加密性编码与信息安全体系研究 3年 2021年
基于多类型生物分子的新一代超高密度信息存储技术研发 3年 2021年
基于大规模可寻址可控催化原理的DNA合成新技术研发 3年 2021年
基于晶体管场效应的单分子测序关键技术研发 3年 2021年
面向生命-非生命融合的智能生物系统构建与开发 - 3年 2021年
BT与IT融合技术的健康医学场景应用示范 - 3年 2021年
表7  2021年“生物与信息融合(BT与IT融合)”重点专项项目
[1] Reinsel D, Gantz J, Rydning J. Data age 2025: the evolution of data to life-critical, don’t focus on big data, focus on the data that’s big. IDC White Paper. International Data Corporation, 2017: 1-25.
[2] Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nature Reviews Genetics, 2019, 20(8): 456-466.
doi: 10.1038/s41576-019-0125-3
[3] Meiser L C, Antkowiak P L, Koch J, et al. Reading and writing digital data in DNA. Nature Protocols, 2020, 15(1): 86-101.
doi: 10.1038/s41596-019-0244-5 pmid: 31784718
[4] Dong Y M, Sun F J, Ping Z, et al. DNA storage: research landscape and future prospects. National Science Review, 2020, 7(6): 1092-1107.
doi: 10.1093/nsr/nwaa007
[5] Ping Z, Ma D Z, Huang X L, et al. Carbon-based archiving: current progress and future prospects of DNA-based data storage. GigaScience, 2019, 8(6): giz075.
doi: 10.1093/gigascience/giz075
[6] Hao Y Y, Li Q, Fan C H, et al. Data storage based on DNA. Small Structures, 2021, 2(2): 2000046.
doi: 10.1002/sstr.202000046
[7] Xu C T, Zhao C, Ma B, et al. Uncertainties in synthetic DNA-based data storage. Nucleic Acids Research, 2021, 49(10): 5451-5469.
doi: 10.1093/nar/gkab230
[8] Jiang C, Zhang Y N, Wang F, et al. Toward smart information processing with synthetic DNA molecules. Macromolecular Rapid Communications, 2021, 42(11): e2100084.
[9] Tan X, Ge L Q, Zhang T Z, et al. Preservation of DNA for data storage. Russian Chemical Reviews, 2021, 90(2): 280-291.
doi: 10.1070/RCR4994
[10] 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展. 合成生物学, 2020, 1(1): 7-28.
Ding M Z, Li B Z, Wang Y, et al. Significant research progress in synthetic biology. Synthetic Biology Journal, 2020, 1(1): 7-28.
[11] 韩明哲, 陈为刚, 宋理富, 等. DNA信息存储:生命系统与信息系统的桥梁. 合成生物学, 2021, 2(3): 309-322.
Han M Z, Chen W G, Song L F, et al. DNA information storage: bridging biological and digital world. Synthetic Biology Journal, 2021, 2(3): 309-322.
[12] 许鹏, 方刚, 石晓龙, 等. DNA存储及其研究进展. 电子与信息学报, 2020, 42(6): 1326-1331.
Xu P, Fang G, Shi X L, et al. DNA storage and its research progress. Journal of Electronics & Information Technology, 2020, 42(6): 1326-1331.
[13] 滕越, 杨姗, 李金玉, 等. DNA数据存储技术原理及其研究进展. 生物化学与生物物理进展, 2021, 48(5): 494-504.
Teng Y, Yang S, Li J Y, et al. Principle and progress of DNA data storage. Progress in Biochemistry and Biophysics, 2021, 48(5): 494-504.
[14] 毛秀海, 李凡, 左小磊. DNA数据存储. 电子与信息学报, 2020, 42(6): 1303-1312.
Mao X H, Li F, Zuo X L. DNA data storage. Journal of Electronics & Information Technology, 2020, 42(6): 1303-1312.
[15] Nguyen B H, Takahashi C N, Gupta G, et al. Scaling DNA data storage with nanoscale electrode wells. Science Advances, 2021, 7(48): eabi6714.
doi: 10.1126/sciadv.abi6714
[16] Meiser L C, Nguyen B H, Chen Y J, et al. Synthetic DNA applications in information technology. Nature Communications, 2022, 13(1): 352.
doi: 10.1038/s41467-021-27846-9 pmid: 35039502
[17] 陈为刚, 潘林强. DNA数据存储: 高通量结绳记事. 中国计算机学会通讯, 2022, 18(4): 10-15.
Chen W G, Pan L Q. DNA data storage: high throughput knotting. Communications of the CCF, 2022, 18(4): 10-15.
[18] Semiconductor Research Corporation. National Institute of Standards and Technology, 2018 semiconductor synthetic biology roadmap. [2022-05-17]. https://www.src.org/library/publication/p095387/p095387.pdf.
[19] 王欣, 赵鹏, 李清扬, 等. 半导体合成生物学的研究进展. 化工学报, 2021, 72(5): 2426-2435.
Wang X, Zhao P, Li Q Y, et al. Research advances in semiconductor synthetic biology. CIESC Journal, 2021, 72(5): 2426-2435.
[20] Semiconductor Industry Association, Semiconductor Research Corporation. Semiconductor research opportunities: an industry vision and guide. [2022-05-17]. https://www.semiconductors.org/wp-content/uploads/2018/06/SIA-SRC-Vision-Report-3.30.17.pdf.
[21] Semiconductor Industry Association, Semiconductor Research Corporation. Decadal plan for semiconductors. [2022-05-17]. https://www.src.org/about/decadal-plan.
[22] National Science Foundation. Semiconductor synthetic biology for information processing and storage technologies (SemiSynBio). [2022-05-17]. https://www.nsf.gov/pubs/2017/nsf17557/nsf17557.htm.
[23] National Science Foundation. Semiconductor synthetic biology for information storage and retrieval (SemiSynBio-II). [2022-05-17]. https://www.nsf.gov/pubs/2020/nsf20518/nsf20518.htm.
[24] National Science Foundation. New NSF awards support the creation of bio-based semiconductors. [2022-05-17]. https://www.nsf.gov/news/news_summ.jsp?cntn_id=295968.
[25] Defense Advanced Research Projects Agency. Molecular informatics. [2022-05-17]. https://www.darpa.mil/program/molecular-informatics.
[26] Intelligence Advanced Research Projects Activity (IARPA). Molecular information storage (MIST). [2022-05-17]. https://www.iarpa.gov/research-programs/mist.
[27] 曹芹, 旷苗, 王晶, 等. 我国“合成生物学”项目立项概况与实施管理建议. 合成生物学. 2020, 1(4): 495-502.
Cao Q, Kuang M, Wang J, et al. Overview of “synthetic biology” projects in China and suggestions for implementation and management. Synthetic Biology Journal, 2020, 1(4): 495-502.
[28] Horizon 2020 (H2020). Coding for security and DNA storage. [2022-05-17]. https://cordis.europa.eu/project/id/801434.
[29] Horizon 2020 (H2020). Oligoarchive-Intelligent DNA storage for archival. [2022-05-17]. https://cordis.europa.eu/project/id/863320.
[30] Horizon 2020 (H2020). DNA data storage. [2022-05-17]. https://cordis.europa.eu/project/id/889300.
[31] Horizon 2020 (H2020). DNA data storage technology for a sustainable digital future. [2022-05-17]. https://cordis.europa.eu/project/id/970550.
[32] Horizon 2020 (H2020). DNA-FAST light driven data technology with multiplexed optical encoding and readout. [2022-05-17]. https://cordis.europa.eu/project/id/964995.
[33] 第十三届全国人民代表大会常务委员会第四次会议. 中华人民共和国国民经济和社会发展第十四个五年规划和. 中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要. [2022-05-17].
The Fourth Session of the Standing Committee of the 13th National People’s Congress. Outline of the 14th Five-Year Plan (2021-2025) for National Economic and Social Development and Vision 2035 of the People’s Republic of China. [2022-05-17]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
[34] 国家科技管理信息系统公共服务平台. “生物与信息融合(BT与IT融合)”重点专项2021年度项目申报指南. [2022-05-17]. https://service.most.gov.cn/sbjhyl2021zy/ index_2.html.
National Science and Technology Information System, Public Service Platform. Guidelines for 2021 annual project application of the major project of “Biotechnology and Information Technology Fusion (BT and IT Fusion)” [2022-05-17]. https://service.most.gov.cn/sbjhyl2021zy/index_2.html.
[35] 习近平主持中央政治局第三十四次集体学习:把握数字经济发展趋势和规律, 推动我国数字经济健康发展. [2022-05-17]. http://www.gov.cn/xinwen/2021-10/19/content_5643653.htm.
Xi stresses sound development of digital economy. [2022-05-17]. http://www.gov.cn/xinwen/2021-10/19/content_5643653.htm.
[36] 国务院. “十四五”数字经济发展规划. [2022-05-17]. http://www.gov.cn/zhengce/content/2022-01/12/content_5667817.htm.
The State Council.The 14th five-year plan on digital economy development. [2022-05-17]. http://www.gov.cn/zhengce/content/2022-01/12/content_5667817.htm.
[37] 中华人民共和国国家互联网信息办公室. “十四五”国家信息化规划. [2022-05-17]. http://www.cac.gov.cn/2021-12/27/c_1642205314518676.htm.
Cyberspace Administration of China. The 14th five-year plan for national informatization. [2022-05-17]. http://www.cac.gov.cn/2021-12/27/c_1642205314518676.htm.
[38] 中华人民共和国国家发展和改革委员会. “十四五”生物经济发展规划. [2022-05-17]. https://www.ndrc.gov.cn/xwdt/tzgg/202205/P020220510324283427632.pdf.
National Development and Reform Commission. The 14th five-year plan for bioeconomic development. [2022-05-17]. https://www.ndrc.gov.cn/xwdt/tzgg/202205/P020220510324283427632.pdf.
[39] 刘晓, 王跃, 毛开云, 等. 生物技术与信息技术的融合发展. 中国科学院院刊, 2020, 35(1): 34-42.
Liu X, Wang Y, Mao K Y, et al. Converge development of biotechnology and information technology. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 34-42.
[40] 宋琪, 丁陈君, 吴晓燕, 等. DNA存储技术国际发展态势分析. 世界科技研究与发展, 2021, 43(1): 24-42.
Song Q, Ding C J, Wu X Y, et al. Analysis on the development strategies and trends of DNA storage technology. World Sci-Tech R & D, 2021, 43(1): 24-42.
[41] DARPA. Creating technology breakthroughs and new capabilities for national security.[2022-05-17]. https://www.darpa.mil/attachments/DARPA-2019-framework.pdf.
[42] Kosuri S, Church G M. Large-scale de novo DNA synthesis: technologies and applications. Nature Methods, 2014, 11(5): 499-507.
doi: 10.1038/nmeth.2918
[43] Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nature Biotechnology, 2016, 34(5): 518-524.
doi: 10.1038/nbt.3423 pmid: 27153285
[44] DNA Data Storage Alliance. Preserving our digital legacy: an introduction to DNA data storage. [2022-05-17]. https://dnastoragealliance.org/dev/publications.
[45] Goldman N, Bertone P, Chen S Y, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 2013, 494(7435): 77-80.
[46] 国家科技管理信息系统公共服务平台. “合成生物学”重点专项 2018 年度拟立项项目公示清单. [2022-05-17]. https://service.most.gov.cn/u/cms/static/201907/09141707pvlf.pdf.
National Science and Technology Information System, Public Service Platform. Announcement list of project of the “synthetic biology” major projects to be approved in 2018. [2022-05-17]. https://service.most.gov.cn/u/cms/static/201907/09141707pvlf.pdf.
[47] 国家科技管理信息系统公共服务平台. “合成生物学”重点专项 2020 年度拟立项项目公示清单. [2022-05-17]. https://service.most.gov.cn/u/cms/static/202010/10162014jjm8.pdf.
National Science and Technology Information System, Public Service Platform. Announcement list of project of the “synthetic biology” major projects to be approved in 2020. [2022-05-17]. https://service.most.gov.cn/u/cms/static/202010/10162014jjm8.pdf.
[48] 国家科技管理信息系统公共服务平台. “变革性技术关键科学问题”重点专项 2020 年度项目申报指南. [2022-05-17]. https://service.most.gov.cn/u/cms/static/201910/11090105grv6.pdf.
National Science and Technology Information System, Public Service Platform. Guidelines for 2020 annual project application of the major project of “key scientific issues in transformative technologies”. [2022-05-17]. https://service.most.gov.cn/u/cms/static/201910/11090105grv6.pdf.
[49] 国家科技管理信息系统公共服务平台. “生物与信息融合(BT与IT融合)”重点专项2022年度项目申报指南. [2022-05-17]. https://service.most.gov.cn/kjjh_tztg_all/20220429/4900.html.
National Science and Technology Information System, Public Service Platform. Guidelines for 2022 annual project application of the major project of “Biotechnology and Information Technology Fusion (BT and IT fusion)”. [2022-05-17]. https://service.most.gov.cn/kjjh_tztg_all/20220429/4900.html.
[50] Chen W G, Han M Z, Zhou J T, et al. An artificial chromosome for data storage. National Science Review, 2021, 8(5): nwab028.
doi: 10.1093/nsr/nwab028
[51] Zhou J T, Zhang C, Wei R, et al. Exogenous artificial DNA forms chromatin structure with active transcription in yeast. Science China Life Sciences, 2021, https://doi.org/10.1007/s11427-021-2044-x.
[52] Fan C Y, Deng Q, Zhu T F. Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nature Biotechnology, 2021, 39(12): 1548-1555.
doi: 10.1038/s41587-021-00969-6
[53] 陈为刚, 黄刚, 李炳志, 等. 音视频文件的DNA信息存储. 中国科学: 生命科学, 2020, 50(1): 81-85.
Chen W G, Huang G, Li B Z, et al. DNA information storage for audio and video files. Scientia Sinica (Vitae), 2020, 50(1): 81-85.
[54] 陈为刚, 葛奇, 王盼盼, 等. 细胞内大片段DNA数据存储的多RS码交织编码. 合成生物学, 2021, 2(3): 428-443.
Chen W G, Ge Q, Wang P P, et al. Multiple interleaved RS codes for data storage using up to Mb-scale synthetic DNA in living cells. Synthetic Biology Journal, 2021, 2(3): 428-443.
[55] 葛奇, 张鹏, 韩明哲, 等. 纳米孔测序信号处理及其在DNA数据存储的应用. 中国生物工程杂志, 2021, 41(8): 75-89.
Ge Q, Zhang P, Han M Z, et al. Signal processing for nanopore sequencing and its application in DNA data storage. China Biotechnology, 2021, 41(8): 75-89.
[56] Xu C T, Ma B, Gao Z L, et al. Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage. Science Advances, 2021, 7(46): eabk0100.
doi: 10.1126/sciadv.abk0100
[57] 齐浩, 郜艳敏. 一种应用于DNA数据存储的寡核苷酸库恒温扩增方法: 中国, CN201911086860.0. 2021-04-20[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=5CBA8DFA5EAACFFA9FEB6FAA8GCACIDABGGAAIBAAHEA9IHG.
Qi H, Gao Y M. Oligonucleotide library constant-temperature amplification method applied to DNA data storage: China, CN201911086860.0. 2021-04-20[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=5CBA8DFA5EAACFFA9FEB6FAA8GCACIDABGGAAIBAAHEA9IHG.
[58] 戴俊彪, 吴庆余, 乃哥麦提·伊加提, 等. 将数据进行生物存储并还原的方法: 中国, CN201610786435.2. 2021-07-13[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9EDA4DBA9EIE9EAB9HDC2BBABFGA9BHH9HAE9FAABIHACGIA.
Dai J B, Wu Q Y, Yijiati N, et al. Data are subjected to biometric storage and the method reduced: China, CN201610786435.2, 2021-07-13[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9EDA4DBA9EIE9EAB9HDC2BBABFGA9BHH9HAE9FAABIHACGIA.
[59] 陈为刚, 黄刚, 韩昌彩, 等. 一种DNA数据存储混合错误纠正与数据恢复方法: 中国, CN201910596136.6. 2021-08-13[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=4CAA8IAA3BBAEHFA9IBB8CGA7BBAEEIA9DBB3BBA3AAA9CDC.
Chen W G, Huang G, Han C C, et al. DNA data storage mixed error correction and data recovery method: China, CN201910596136.6. 2021-08-13[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=4CAA8IAA3BBAEHFA9IBB8CGA7BBAEEIA9DBB3BBA3AAA9CDC.
[60] 陈非, 卜东波, 马灌楠, 等. DNA活字存储系统和方法: 中国, CN202010688281.X. 2021-08-20[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9EHE3BCA9IDE8AIA8DEA9ICB9EFG9CCD9BFF9IAB9ADC5BDA.
Chen F, Bu D B, Ma G N, et al. DNA type storage system and method: China, CN202010688281.X. 2021-08-20[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9EHE3BCA9IDE8AIA8DEA9ICB9EFG9CCD9BFF9IAB9ADC5BDA.
[61] 陈为刚, 韩昌彩. 可包含人造碱基的DNA存储分层表示与交织编码方法: 中国, CN201810573636.3. 2021-08-24[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9BGA2CAA9IBBEFIA7BFA9EGB9HDGBGFACIIA9CHG9CHDCHGA.
Chen W G, Han C C. DNA storage layered representation and interweaving coding method capable of containing artificial base: China, CN201810573636.3. 2021-08-24[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9BGA2CAA9IBBEFIA7BFA9EGB9HDGBGFACIIA9CHG9CHDCHGA.
[62] 元英进, 韩明哲, 陈为刚, 等. 基于DNA的信息存储方法: 中国, CN201811377712.X. 2021-11-12[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9IEF9DHB9GHFDEIA8AHA9HED9BHC9EFHCFHA9ECE7AGA9GCB.
Yuan Y J, Han M Z, Chen W G, et al. DNA-based information storage method: China, CN201811377712.X. 2021-11-12[2022-05-17]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9IEF9DHB9GHFDEIA8AHA9HED9BHC9EFHCFHA9ECE7AGA9GCB.
[1] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[2] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[3] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[4] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[5] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[6] 葛奇,张鹏,韩明哲,杨晋生,张大璐,陈为刚. 纳米孔测序信号处理及其在DNA数据存储的应用[J]. 中国生物工程杂志, 2021, 41(8): 75-89.
[7] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[8] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[9] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[10] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[11] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[12] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[13] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[14] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[15] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.