Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 62-71    DOI: 10.13523/j.cb.2011025
综述     
合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *
常璐1,黄娇芳1,2,**(),董浩1,周斌辉3,朱小娟1,庄英萍1,**()
1 华东理工大学 生物反应器工程国家重点实验室 上海 200237
2 上海科技大学物质科学与技术学院 上海 201210
3 上海市生态环境局执法总队 上海 200235
A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms
CHANG Lu1,HUANG Jiao-fang1,2,**(),DONG Hao1,ZHOU Bin-hui3,ZHU Xiao-juan1,ZHUANG Ying-ping1,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
2 School of Physical Science and Technology (SPST), Shanghai Tech University, Shanghai 201210, China
3 Shanghai Municipal Bureau of Ecology and Environment Law Enforcement Corps, Shanghai 200235, China
 全文: PDF(21462 KB)   HTML
摘要:

随着工业化进程不断加快,重金属污染日益加剧,尤其是水体的重金属污染,已严重威胁人类健康,迫切需要进行有效的污染修复。相比传统物理和化学修复,生物修复具有绿色环保和可持续性的特点。因为微生物生长繁殖迅速、生物被膜具有动态可调节和环境适应性好等特点,使其能更好耐受胁迫环境,在环境修复中有重要作用。合成生物学改造微生物及生物被膜用于环境污染生物修复近年兴起,成为未来重要的发展方向。主要概述了重金属污染的微生物修复机理和方法,结合可编程微生物被膜的最新研究成果,重点介绍了合成生物学改造微生物及生物被膜的分类与功能应用,以及在重金属铅、汞和镉等污染修复中的研究进展,讨论了重金属污染生物修复的发展方向。

关键词: 重金属污染生物修复合成生物学微生物生物被膜    
Abstract:

With the development of industrialization, heavy metal pollution has become a severe environmental hazard, in particular its pollution to water systems and consequently endangering human health, making its remediation an urgent issue. Compared with traditional physical and chemical remediation, bioremediation is green and sustainable. Microorganisms and microbial biofilms play an important role in bioremediation due to their rapid growth, intrinsic nature for dynamic adaption to environments and consequent tolerance to environmental stresses. Synthetic biology has provided a methodology for engineering and reprograming microorganisms and biofilms with robustness for more efficient degradation of environmental pollutants including heavy metals. This review summarizes the current status of heavy metal pollution, the bioremediation mechanism and research progress of microbial remediation, with a focus on the development of functional biofilms engineered by synthetic biology and their applications in bioremediation for heavy metal Pb, Hg, Cd and others. At the end, this review highlights the perspectives for bioremediation of heavy metal pollution.

Key words: Heavy metal pollution    Bioremediation    Synthetic biology    Microorganisms    Biofilms
收稿日期: 2020-11-12 出版日期: 2021-02-09
ZTFLH:  Q819  
基金资助: *上海市自然科学基金(19ZR1477100);国家自然科学基金(31872728);国家重点研发计划(2020YFA0908900)
通讯作者: 黄娇芳,庄英萍     E-mail: huangjf@ecust.edu.cn;ypzhuang@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常璐
黄娇芳
董浩
周斌辉
朱小娟
庄英萍

引用本文:

常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.

CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms. China Biotechnology, 2021, 41(1): 62-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2011025        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/62

图1  重金属通过多种途径对人类产生有害影响
图2  合成生物学改造微生物在重金属污染检测和修复中的应用研究
图3  合成生物学改造的枯草芽孢杆菌生物被膜具有功能化[75]
图4  合成生物学改造微生物被膜在重金属污染修复中的研究进展
[1] Vardhan K H, Kumar P S, Panda R C. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. Journal of Molecular Liquids, 2019,290:111197.
[2] Vareda J P, Valente A J M, Duraes L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. Journal of Environmental Management, 2019,246:101-118.
[3] Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 2014,7(2):60-72.
[4] Mgbemene C A, Nnaji C C, Nwozor C. Industrialization and its backlash: focus on climate change and its consequences. Environmental Science and Technology, 2016,9(4):301-316.
[5] Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. Heavy metal pollution and human biotoxic effects. International Journal of the Physical Sciences, 2007,2(5):112-118.
[6] Vijayaraghavan K, Yun Y S. Bacterial biosorbents and biosorption. Biotechnology Advances, 2008,26(3):266-291.
[7] Xia Y, Li Y. Study of gelatinous supports for immobilizing inactivated cells of Rhizopusoligosporus to prepare biosorbent for lead ions. International Journal of Environmental Studies, 2002,5:1-6.
[8] Singh S, Gupta V K. Biodegradation and bioremediation of pollutants: perspectives strategies and applications. International Journal of Pharmacology and Biological Sciences, 2016,10(1):53-65.
[9] Smanski M J, Zhou H, Claesen J, et al. Synthetic biology to access and expand nature’s chemical diversity. Nature Reviews Microbiology, 2016,14(3):135-149.
[10] Pekey H, Doğan G. Application of positive matrix factorisation for the source apportionment of heavy metals in sediments: a comparison with a previous factor analysis study . Microchemical Journal, 2013,106:233-237.
[11] Chen H Y, Teng Y G, Li J, et al. Source apportionment of trace metals in river sediments: a comparison of three methods. Environmental Pollution, 2016,211:28-37.
pmid: 26736053
[12] Cheng H X, Li M, Zhao C D, et al. Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 2014,139:31-52.
[13] Tay P, Nguyen P, Joshi N. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synthetic Biology, 2017,6(10):1841-1850.
[14] Suedel B C, Boraczek J A, Peddicord R K, et al. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Reviews of Environmental Contamination and Toxicology, 1994,136:21-89.
pmid: 8029491
[15] Guzzi G, La Porta C A M. Molecular mechanisms triggered by mercury. Toxicology, 2008,244(1):1-12.
pmid: 18077077
[16] He K M, Wang S Q, Zhang J L. Blood lead levels of children and its trend in China. Science of the Total Environment, 2009,407(13):3986-3993.
[17] Tong S, Von schirnding Y E, Prapamontol T. Environmental lead exposure: a public health problem of global dimensions. Bulletin of the World Health Organization, 2000,78(9):1068-1077.
[18] Branvall M L, Bindler R, Emteryd O, et al. Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. Journal of Paleolimnology, 2001,25(4):421-435.
[19] Watts J. Lead poisoning cases spark riots in China. The Lancet, 2009,374(9693):868.
[20] Zeng X X, Tang J X, Liu X D, et al. Isolation, identification and characterization of cadmium-resistant Pseudomonas aeruginosa strain E1. Journal of Central South University of Technology, 2009,16(3):416-421.
[21] 王志芳, 肖俊, 罗永巨. 水环境镉污染对养殖鱼类的影响研究进展. 广西科学院学报, 2019,35(3):166-171.
Wang Z F, Xiao J, Luo Y J. A review of the effects of cadmium on aquaculture. Journal of Guangxi Academy of Sciences, 2019,35(3):166-171.
[22] Chen L, Zhou S L, Shi Y X, et al. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. The Science of the Total Environment, 2018,615:141-149.
[23] Rajeshkumar S, Liu Y, Zhang X Y, et al. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 2018,191:626-638.
[24] Ke Z X, Xie P, Guo L G. Ecological restoration and factors regulating phytoplankton community in a hypertrophic shallow lake, Lake Taihu, China. Acta Ecologica Sinica, 2019,39(1):81-88.
[25] Bing H J, Wu Y H, Sun Z B, et al. Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake catchment, China. Journal of Environmental Sciences, 2011,23(10):1671-1678.
[26] Yan F, Liu C L, Wei B W. Evaluation of heavy metal pollution in the sediment of Poyang Lake based on stochastic geoaccumulation model (SGM). Science of the Total Environment, 2019,659:1-6.
[27] Chen R H, Chen H Y, Song L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. The Science of the Total Environment, 2019,694:133819.
[28] 郭晶, 李利强, 黄代中, 等. 洞庭湖表层水和底泥中重金属污染状况及其变化趋势. 环境科学研究, 2016,29(1):44-51.
Guo J, Li L Q, Huang D Z, et al. Assessment of heavy metal pollution in surface water and sediment of Dongting Lake. Research of Environmental Sciences, 2016,29(1):44-51.
[29] De Souza R M, Mathias B M, Da Silveira C L P, et al. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005,60(5):711-715.
[30] Bakircioglu D, Kurtulus Y B, Yurtsever S. Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES. Food Chemistry, 2013,138(2-3):770-775.
pmid: 23411174
[31] 吕伟明, 张洁, 龚伟达, 等. ICP-MS测定地表水中多个元素的分析方法研究. 环境科学与管理, 2009,34(4):135-139.
Lv W M, Zhang J, Gong W D, et al. Method for analysis of several elements in surface water by ICP-MS. Environmental Science and Management, 2009,34(4):135-139.
[32] 邹可可, 彭博. 原子吸收光谱法在测定水中重金属的应用. 世界有色金属, 2016,31(15):115-116.
Zou K K, Peng B. The application of atomic absorption spectromrtry in the determination of heavy metals in water. World Nonferrous Metals, 2016,31(15):115-116.
[33] 江永红. 电感耦合等离子体质谱法和原子荧光法测定植物性食品中硒含量的对比分析. 安徽农业科学, 2015,43(5):228-230.
Jiang Y H. Comparative of determination of selenium in plant food by inductively coupled plasma mass spectrometry and atomic fluorescence spectrometry. Journal of Anhui Agricultural Sciences, 2015,43(5):228-230.
[34] 庞洁, 陆日贵, 邱棋伟. 氢化物发生-原子荧光光度法同时测定饮用水中砷和汞. 中国卫生检验杂志, 2011,21(8):1898-1899,1902.
Pang J, Lu Y G, Qiu Q W. Simultaneous determination of arsenic and mercury in drinking water by hydride-generation atomic fluorescence spectrometry. Chinses Journal of Health Laboratory Technology, 2011,21(8):1898-1899,1902.
[35] Chojnacka K. Biosorption and bioaccumulation the prospects for practical applications. Environment International, 2010,36(3):299-307.
[36] Raghunandan K, Kumar A, Kumar S, et al. Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. 3Biotech, 2018,8(1):71.
[37] Dangi A K, Sharma B, Hill R T, et al. Bioremediation through microbes: systems biology and metabolic engineering approach. Critical Reviews in Biotechnology, 2019,39(1):79-98.
pmid: 30198342
[38] Dixit R, Malaviya D, Pandiyan K, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 2015,7(2):2189-2212.
[39] Chen C, Wang J L. Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae . Biomedical and Environmental Sciences, 2007,20(6):478-482.
[40] Talos K, Pager C, Tonk S, et al. Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Universitatis. Sapientiae, Agriculture and Environment, 2009,1:20-30.
[41] IgirI B E, Okoduwa S I R, Idoko G O, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of Toxicology, 2018,2018:2568038.
doi: 10.1155/2018/2568038 pmid: 30363677
[42] Alvarez A, Saez J M, Costa J S D, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 2017,166:41-62.
[43] Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry, 2014,12(7):1365-1377.
[44] Mahapatra B, Dhal N K, Pradhan A, et al. Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: a mini-review. Materials Today: Proceedings, 2020,30:283-288.
[45] Groudev S N, Spasova I I, Georgiev P S. In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. International Journal of Mineral Processing, 2001,62(1-4):301-308.
[46] Sajayan A, Kiran G S, Priyadharshini S, et al. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environmental Pollution, 2017,228:118-127.
doi: 10.1016/j.envpol.2017.05.020 pmid: 28527323
[47] Faheem M, Shabbir S, Zhao J, et al. Enhanced adsorptive bioremediation of heavy metals (Cd2+, Cr6+, Pb2+) by methane-oxidizing epipelon . Microorganisms, 2020,8(4):505.
[48] 赵国屏. 合成生物学:开启生命科学“会聚”研究新时代. 中国科学院院刊, 2018,33(11):1135-1149.
Zhao G P. Synthetic biology: unsealing the convergence era of life science research. Bulletin of the Chinese Academy of Sciences, 2018,33(11):1135-1149.
[49] Endy D. Foundations for engineering biology. Nature, 2005,438(7067):449-453.
[50] 刘立中, 白阳, 郑海, 等. 合成生物学在基础生命科学研究中的应用. 生物工程学报, 2017,33(3):315-323.
Liu L Z, Bai Y, Zheng H, et al. Fundamental aspects of synthetic biology. Chinese Journal of Biotechnology, 2017,33(3):315-323.
[51] 张先恩. 中国合成生物学发展回顾与展望. 中国科学:生命科学, 2019,49(12):1543-1572.
Zhang X E. Synthetic biology in China: review and prospects. Scientia Sinica Vitae, 2019,49(12):1543-1572.
[52] Bradley R W, Buck M, Wang B J. Tools and principles for microbial gene circuit engineering. Journal of Molecular Biology, 2016,428(5 Pt B):862-888.
pmid: 26463592
[53] Marien M. 10 emerging technologies that will change your world. Engineering Management Review IEEE, 2004,32(2):20.
[54] Liu P L, Huang Q Y, Chen W L. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Environmental Pollution, 2012,164:66-72.
pmid: 22336732
[55] Kuroda K, Shibasaki S, Ueda M, et al. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Applied Microbiology and Biotechnology, 2001,57(5-6):697-701.
[56] Biondo R, Da Silva F A, Vicente E J, et al. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environmental Science & Technology, 2012,46(15):8325-8332.
[57] Li H, Cong Y, Lin J, et al. Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. Journal of Basic Microbiology, 2015,55(3):398-405.
doi: 10.1002/jobm.201300670 pmid: 25727053
[58] Tang X, Zeng G M, Fan C Z, et al. Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd (II) from aqueous solutions. The Science of the Total Environment, 2018,636:1355-1361.
[59] Wei W, Liu X Z, Sun P Q, et al. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environmental Science and Technology, 2014,48(6):3363-3371.
pmid: 24564581
[60] Yin K, Lv M, Wang Q N, et al. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Research, 2016,103:383-390.
pmid: 27486950
[61] Branda S S, Vik S, Friedman L, et al. Biofilms: the matrix revisited. Trends in Microbiology, 2005,13(1):20-26.
[62] Ma L Y, Wang J, Wang S W, et al. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environmental Microbiology, 2012,14(8):1995-2005.
[63] Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002,56(1):187-209.
[64] 刘伟杰, 刘聪, 蒋继宏. 枯草芽孢杆菌形成生物被膜的研究进展. 微生物学报, 2014,54(9):977-983.
Liu W J, Liu C, Jiang J H. Research progress on biofilm formation by Bacillus subtilis- a review. Acta Microbiologica Sinica, 2014,54(9):977-983.
[65] Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 2016,14(9):563-575.
pmid: 27510863
[66] Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microbial Cell Factories, 2016,15(1):165.
[67] Karadag D, Köroğlu O E, OzkayA B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater . Process Biochemistry, 2015,50(2):262-271.
[68] Biswas K, Taylor M W, Turner S J. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater. Applied Microbiology and Biotechnology, 2014,98(3):1429-1440.
doi: 10.1007/s00253-013-5082-8 pmid: 23838795
[69] Liu C, Wang K, Jiang J H, et al. A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochemical Engineering Journal, 2015,93:166-172.
[70] Nguyen P, Botyanszki Z, Tay P, et al. Programmable biofilm-based materials from engineered curli nanofibres. Nature Communications, 2014,5:4945.
doi: 10.1038/ncomms5945 pmid: 25229329
[71] Chen A, Deng Z, Billings A, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014,13(5):515-523.
[72] Wang X Y, Pu J H, An B L, et al. Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Advanced Materials, 2018,30(16):e1705968.
[73] Cao Y X, Feng Y Y, Ryser M D, et al. Programmable assembly of pressure sensors using pattern-forming bacteria. Nature Biotechnology, 2017,35(11):1087-1093.
[74] Jiang L, Song X, Li Y, et al. Programming integrative extracellular and intracellular biocatalysis for rapid, robust, and recyclable synthesis of trehalose. ACS Catalysis, 2018,8(3):1837-1842.
[75] Huang J F, Liu S, Zhang C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology, 2019,15(1):34-41.
pmid: 30510190
[76] Guine V, Spadini L, Sarret G, et al. Zinc sorption to three gram-negative bacteria: combined titration, modeling and EXAFS study. Environmental Science & Technology, 2006,40(6):1806-1813.
[77] Fang L C, Huang Q Y, Wei X, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS) minerals and their composites. Bioresource Technology, 2010,101(15):5774-5779.
pmid: 20227874
[78] Fang L C, Wei X, Cai P, et al. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and pseudomonas putida. Bioresource Technology, 2011,102(2):1137-1141.
pmid: 20869870
[79] Zeng X X, Tang J X, Liu X D, et al. Response of P. aeruginosa E1 gene expression to cadmium stress. Current Microbiology, 2012,65(6):799-804.
pmid: 22996729
[80] Karimpour M, Ashrafi S D, Taghavi K, et al. Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: a dataset. Data in Brief, 2018,18:1185-1192.
[81] Mangwani N, Shukla S K, Rao T S, et al. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids and Surfaces B: Biointerfaces, 2014,114:301-309.
pmid: 24216621
[82] Chakraborty J, Das S. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environmental Science and Pollution Research International, 2014,21(24):14188-14201.
pmid: 25056746
[83] Yu Q, Mishra B, Fein J. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. Journal of Hazardous Materials, 2020,391:122209.
doi: 10.1016/j.jhazmat.2020.122209 pmid: 32036314
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[4] 孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱. 乳杆菌对致病假单胞菌的抑制作用研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 103-109.
[5] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[6] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[7] 邵映芝,车鉴,程驰,江志阳,薛闯. 分子生物学方法提高电活性微生物胞外电子传递效率的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 50-59.
[8] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[9] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[10] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[11] 吕雪芹, 金柯, 刘家恒, 崔世修, 李江华, 堵国成, 刘龙. 工业模式微生物膜有序性的活细胞定量分析 *[J]. 中国生物工程杂志, 2021, 41(1): 20-29.
[12] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[13] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[14] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[15] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.