Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (7): 90-100    DOI: 10.13523/j.cb.2203072
综述     
蓝藻光驱固碳合成糖类物质的技术研究进展*
曾雪霞1,2,3,但玉1,2,3,毛绍名1,2,**(),孙佳慧3,4,5,栾国栋3,4,5,**(),吕雪峰3,4,5
1. 中南林业科技大学生命科学与技术学院 长沙 410004
2. 中南林业科技大学林业生物技术湖南省重点实验室 长沙 410004
3. 中国科学院青岛生物能源与过程研究所 中国科学院生物燃料重点实验室 青岛 266101
4. 山东能源研究院 青岛 266101
5. 青岛新能源山东省实验室 青岛 266101
Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide
Xue-xia ZENG1,2,3,Yu DAN1,2,3,Shao-ming MAO1,2,**(),Jia-hui SUN3,4,5,Guo-dong LUAN3,4,5,**(),Xue-feng LV3,4,5
1. College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
2. Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
3. Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
4. Shandong Energy Institute, Qingdao 266101, China
5. Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
 全文: PDF(1577 KB)   HTML
摘要:

糖类物质在食品、医药、日化、发酵领域有着广泛应用,对人类健康和社会发展有着重要意义。发展新型糖类物质合成技术有利于解决传统植物生物质“采集-炼制”产糖模式所面临的高成本、长周期、时空限制等风险和问题。蓝藻是一类重要的光自养微生物,也是极具潜力的新型微生物光合平台,发展蓝藻光驱固碳产糖技术有望实现二氧化碳向特定糖类产物的一站式定向转化,实现糖类物质合成的模式变革。糖类物质本身在蓝藻天然光合代谢网络中发挥重要作用,特别是卡尔文循环、糖原代谢、相容性物质代谢等几个重要生理模块的运转都是以不同糖类物质的转化来驱动的;而合成生物技术的发展又为光合产糖网络重塑和扩展注入了新的驱动力,在产品类型、合成模式及生产效率上显著提升了蓝藻光驱固碳产糖技术的发展和应用潜力。针对蓝藻光驱固碳产糖技术的发展应用,从模式、策略、产物等不同维度总结了相关进展和风险挑战,并对其未来前景和方向进行了展望。

关键词: 蓝藻光合作用合成生物学    
Abstract:

Sugar substances are widely used in the fields of food, medicine, daily chemical and fermentation, and are of great significance to human health and social development. For a long time, the production of sugar substances has been practically based on the collection and planting-harvesting of plant biomass. Solar energy and carbon dioxide would be fixed in plant photosynthesis process, and stored in the form of sugars (starch, cellulose, and sucrose) in biomass. The bulk sugar feedstock would be extracted from plant biomass, and then be utilized for generation of other sugar products through multiple steps of conversion, refinery, and purification. The dependence on the plant sourced biomass of current sugar production technology leads to the unavoidable risks and drawbacks of long cultivation term, climate & location constraints, and high pre-treatment costs. The development of novel technologies for sugar production is conducive to removing the bottlenecks faced by the traditional modes derived from plant biomass harvesting-refining industry. Cyanobacteria are an important group of photoautotrophic prokaryotic microorganisms and are also supposed to be promising microbial photosynthetic platforms. The development of cyanobacterial synthetic biotechnology has facilitated the direct conversion of carbon dioxide into dozens of natural and non-natural metabolites, of which sugars are a representative group. Cyanobacterial photosynthetic production of sugars is expected to realize the one-step conversion of carbon dioxide into specific sugar products and to refresh the paradigm of current sugar production technology. Sugar metabolites play important roles in the natural photosynthetic metabolic network of cyanobacteria, especially that the operations of several important physiological modules such as the Calvin cycle, glycogen metabolism, and compatible substance metabolism, are mainly promoted by the conversion and metabolism of multiple sugars and sugar-derived metabolites. Although some progress has been made in the synthesis of special sugar substances using natural cyanobacterial resources, such as the successful development and industrial application of the technology of Spirulina large-cultivation based glycerol glucosides production, there are still many challenges in the development and application of this mode. In recent years, the development of synthetic biotechnology has been providing new driving forces for remodeling and expanding the cyanobacterial photosynthetic sugar metabolism networks. Through specific transporter engineering, secretory production of some important sugar products, e.g. sucrose and trehalose, has been achieved, and it significantly relieved the metabolic stress from intracellular storage and increased the product titers. In addition, the sugar secretions would facilitate the development of derived technologies such as in situ separation and extraction of products as well as construction of artificial photosynthesis driven consortium. In combination with metabolic engineering strategies from multiple levels and steps, the production efficiency of cyanobacterial sugars would be significantly enhanced, photosynthetic production of novel sugar products would be achieved, and the updating of the sugar production routes could be expected. This review systematically summarized the progress and challenges in developing and utilizing cyanobacterial photosynthetic sugar production technologies, and discussed the future development prospects and research directions.

Key words: Cyanobacteria    Photosynthesis    Sugar    Synthetic biology
收稿日期: 2022-03-31 出版日期: 2022-08-03
ZTFLH:  Q493.4  
基金资助: *国家自然科学基金资助项目(31770092);国家自然科学基金资助项目(32070084)
通讯作者: 毛绍名,栾国栋     E-mail: msm526@163.com;luangd@qibebt.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾雪霞
但玉
毛绍名
孙佳慧
栾国栋
吕雪峰

引用本文:

曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.

Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide. China Biotechnology, 2022, 42(7): 90-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203072        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I7/90

图1  糖类物质参与的蓝藻(聚球藻PCC 7942)天然光合代谢网络
宿主 产物 改造策略 产量 引文
聚球藻UTEX 2973 蔗糖 导入大肠杆菌CscB蔗糖转运蛋白 8 g/L [45]
聚球藻PCC 7942 海藻糖 过量表达鱼腥藻MTS-MTH途径;阻断蔗糖合成途径;导入非洲摇蚊TreT海藻糖转运蛋白 5.7 g/L(半连续批次培养) [46]
聚球藻PCC 7942 果糖、葡萄糖 过量表达蔗糖水解酶InvA;导入来自运动发酵单胞菌的己糖转运蛋白Glf 27 mg/L, 5.4 mg/L [50]
集胞藻PCC 6803 赤藓糖醇 导入Trichosporonoides megachiliensis赤藓糖-4-磷酸-磷酸酶和来自酿酒酵母的藓糖还原酶 256 mg/L [48]
聚球藻PCC 7002 甘露糖醇 导入大肠杆菌甘露糖醇-1-磷酸脱氢酶和艾美尔式菌甘露糖醇-1-磷酸酶;阻断糖原合成途径 1.1 g/L [49]
聚球藻PCC 7942 木糖醇 导入大肠杆菌来源的木糖转运蛋白XylE和白色念珠菌木糖还原酶XR 33 g/L(木糖为底物)
表1  人工构建蓝藻光驱固碳产糖细胞工厂
图2  合成生物技术驱动的蓝藻光驱固碳产糖模式发展
[1] Dwek R A. Glycobiology: toward understanding the function of sugars. Chemical Reviews, 1996, 96(2): 683-720.
doi: 10.1021/cr940283b
[2] Zollner N, Heuckenkamp P U. Sugars and sugar substitutes:introduction. Nutr Metab, 1975, 18: R5-R7.
[3] Ball S G, Morell M K. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology, 2003, 54: 207-233.
doi: 10.1146/annurev.arplant.54.031902.134927
[4] Zacchi L F, Schulz B L. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconjugate Journal, 2016, 33(3): 359-376.
doi: 10.1007/s10719-015-9641-3 pmid: 26638212
[5] Taylor M E, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. The FEBS Journal, 2019, 286(10): 1800-1814.
doi: 10.1111/febs.14759
[6] Mu W M, Zhang W L, Feng Y H, et al. Recent advances on applications and biotechnological production of d-psicose. Applied Microbiology and Biotechnology, 2012, 94(6): 1461-1467.
doi: 10.1007/s00253-012-4093-1
[7] Dien B S, Cotta M A, Jeffries T W. Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology, 2003, 63(3): 258-266.
pmid: 13680206
[8] Sasaki K, Tsuge Y, Kawaguchi H, et al. Sucrose purification and repeated ethanol production from sugars remaining in sweet Sorghum juice subjected to a membrane separation process. Applied Microbiology and Biotechnology, 2017, 101(15): 6007-6014.
doi: 10.1007/s00253-017-8316-3 pmid: 28488116
[9] Sjölin M, Thuvander J, Wallberg O, et al. Purification of sucrose in sugar beet molasses by utilizing ceramic nanofiltration and ultrafiltration membranes. Membranes, 2019, 10(1): 5.
doi: 10.3390/membranes10010005
[10] Lynd L R. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 1996, 21: 403-465.
doi: 10.1146/annurev.energy.21.1.403
[11] Golecha R, Gan J B. Biomass transport cost from field to conversion facility when biomass yield density and road network vary with transport radius. Applied Energy, 2016, 164: 321-331.
doi: 10.1016/j.apenergy.2015.11.070
[12] Zhang T, Yang J G, Tian C Y, et al. High-yield biosynthesis of glucosylglycerol through coupling phosphorolysis and transglycosylation reactions. Journal of Agricultural and Food Chemistry, 2020, 68(51): 15249-15256.
doi: 10.1021/acs.jafc.0c04851 pmid: 33306378
[13] Wu Y F, Sun X X, Lin Y H, et al. Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose. Metabolic Engineering, 2017, 39: 1-8.
doi: 10.1016/j.ymben.2016.11.001
[14] Rousseaux C, Gregg W. Interannual variation in phytoplankton primary production at A global scale. Remote Sens, 2013, 6: 1-19.
doi: 10.3390/rs6010001
[15] Flombaum P, Gallegos J L, Gordillo R A, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9824-9829.
[16] Dexter J, Armshaw P, Sheahan C, et al. The state of autotrophic ethanol production in Cyanobacteria. Journal of Applied Microbiology, 2015, 119(1): 11-24.
doi: 10.1111/jam.12821 pmid: 25865951
[17] Angermayr S A, van der Woude A D, Correddu D, et al. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp.PCC6803. Biotechnology for Biofuels, 2014, 7: 99.
[18] Gao X, Gao F, Liu D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 2016, 9(4): 1400-1411.
[19] Hendry J I, Prasannan C, Ma F F, et al. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13C metabolic flux analysis. Biotechnology and Bioengineering, 2017, 114(10): 2298-2308.
doi: 10.1002/bit.26350 pmid: 28600876
[20] Levi C, Preiss J. Regulatory properties of the ADP-glucose pyrophosphorylase of the blue-green bacterium Synechococcus 6301. Plant Physiology, 1976, 58(6): 753-756.
doi: 10.1104/pp.58.6.753 pmid: 16659760
[21] Feng Y Y, Yao M D, Wang Y, et al. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes. Biotechnology Advances, 2020, 41: 107538.
doi: 10.1016/j.biotechadv.2020.107538
[22] Du W, Liang F Y, Duan Y K, et al. Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metabolic Engineering, 2013, 19: 17-25.
doi: 10.1016/j.ymben.2013.05.001
[23] Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Progress in Nucleic Acid Research and Molecular Biology, 1994, 47: 299-329.
pmid: 8016324
[24] Guerra L T, Xu Y, Bennette N, et al. Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp.strain PCC 7002. Journal of Biotechnology, 2013, 166(3): 65-75.
doi: 10.1016/j.jbiotec.2013.04.005 pmid: 23608552
[25] Stal L J, Moezelaar R. Fermentation in cyanobacteria1. FEMS Microbiology Reviews, 1997, 21(2): 179-211.
[26] Nakamura Y, Takahashi J I, Sakurai A, et al. Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant and Cell Physiology, 2005, 46(3): 539-545.
doi: 10.1093/pcp/pci045
[27] Luan G D, Zhang S S, Wang M, et al. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnology Advances, 2019, 37(5): 771-786.
doi: 10.1016/j.biotechadv.2019.04.005
[28] Aikawa S, Izumi Y, Matsuda F, et al. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technology, 2012, 108: 211-215.
doi: 10.1016/j.biortech.2012.01.004
[29] Aikawa S, Nishida A, Ho S H, et al. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnology for Biofuels, 2014, 7: 88.
doi: 10.1186/1754-6834-7-88
[30] Yu J J, Liberton M, Cliften P F, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports, 2015, 5: 8132.
doi: 10.1038/srep08132
[31] Song K, Tan X M, Liang Y J, et al. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and Biotechnology, 2016, 100(18): 7865-7875.
doi: 10.1007/s00253-016-7510-z pmid: 27079574
[32] Brown A D, Simpson J R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Journal of General Microbiology, 1972, 72(3): 589-591.
pmid: 4404634
[33] Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews, 2011, 35(1): 87-123.
doi: 10.1111/j.1574-6976.2010.00234.x pmid: 20618868
[34] MacKay M A, Norton R S, Borowitzka L J. Organic osmoregulatory solutes in cyanobacteria. Microbiology, 1984, 130(9): 2177-2191.
doi: 10.1099/00221287-130-9-2177
[35] Reed R H, Stewart W D P. Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Marine Biology, 1985, 88(1): 1-9.
doi: 10.1007/BF00393037
[36] Tan X M, Luo Q, Lu X F. Biosynthesis, biotechnological production, and applications of glucosylglycerols. Applied Microbiology and Biotechnology, 2016, 100(14): 6131-6139.
doi: 10.1007/s00253-016-7608-3
[37] Zheng S N, Sun H L, Mao S M, et al. Engineering the glycogen metabolism in cyanobacterial photosynthetic cell factories: a review. Chinese Journal of Biotechnology, 2022, 38(2): 592-604.
doi: 10.13345/j.cjb.210230 pmid: 35234384
[38] Ducat D C, Avelar-Rivas J A, Way J C, et al. Rerouting carbon flux to enhance photosynthetic productivity. Applied and Environmental Microbiology, 2012, 78(8): 2660-2668.
doi: 10.1128/AEM.07901-11
[39] Hays S G, Yan L L W, Silver P A, et al. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. Journal of Biological Engineering, 2017, 11: 4.
doi: 10.1186/s13036-017-0048-5
[40] Weiss T L, Young E J, Ducat D C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metabolic Engineering, 2017, 44: 236-245.
doi: 10.1016/j.ymben.2017.10.009
[41] Löwe H, Hobmeier K, Moos M, et al. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnology for Biofuels, 2017, 10: 190.
doi: 10.1186/s13068-017-0875-0
[42] Fedeson D T, Saake P, Calero P, et al. Biotransformation of 2, 4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microbial Biotechnology, 2020, 13(4): 997-1011.
doi: 10.1111/1751-7915.13544 pmid: 32064751
[43] Qiao C C, Duan Y K, Zhang M Y, et al. Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Applied and Environmental Microbiology, 2018, 84(2): e02023-e02017.
[44] Abramson B W, Lensmire J, Lin Y T, et al. Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium. Algal Research, 2018, 33: 248-255.
doi: 10.1016/j.algal.2018.05.013
[45] Lin P C, Zhang F Z, Pakrasi H B. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 2020, 10: 390.
doi: 10.1038/s41598-019-57319-5
[46] Qiao Y, Wang W H, Lu X F. Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metabolic Engineering, 2020, 62: 161-171.
doi: S1096-7176(20)30134-8 pmid: 32898716
[47] Liang Y J, Zhang M Y, Wang M, et al. Freshwater cyanobacterium Synechococcus elongatus PCC 7942 adapts to an environment with salt stress via ion-induced enzymatic balance of compatible solutes. Applied and Environmental Microbiology, 2020, 86(7): e02904-e02919.
[48] van der Woude A D, Perez Gallego R, Vreugdenhil A, et al. Genetic engineering of Synechocystis PCC 6803 for the photoautotrophic production of the sweetener erythritol. Microbial Cell Factories, 2016, 15: 60.
doi: 10.1186/s12934-016-0458-y
[49] Wu W Y, Du W, Gallego R P, et al. Using osmotic stress to stabilize mannitol production in Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2020, 13: 117.
doi: 10.1186/s13068-020-01755-3
[50] Niederholtmeyer H, Wolfstädter B T, Savage D F, et al. Engineering cyanobacteria to synthesize and export hydrophilic products. Applied and Environmental Microbiology, 2010, 76(11): 3462-3466.
doi: 10.1128/AEM.00202-10 pmid: 20363793
[51] Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13(4): 17R-27R.
doi: 10.1093/glycob/cwg047 pmid: 12626396
[52] Park J C, Jeong H, Kim Y, et al. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. Microbiology (Reading, England), 2022, 168(1): 2022Jan; 168(1).
[53] Jacobsen J H, Frigaard N U. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metabolic Engineering, 2014, 21: 60-70.
doi: 10.1016/j.ymben.2013.11.004 pmid: 24269997
[54] Velmurugan R, Incharoensakd A, et al. Disruption of polyhydroxybutyrate synthesis redirects carbon flow towards glycogen synthesis in Synechocystis sp. PCC 6803 overexpressing glgC/glgA. Plant & Cell Physiology, 2018, 59(10): 2020-2029.
[55] Shimakawa G, Hasunuma T, Kondo A, et al. Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC6803. Bioscience Biotechnology and Biochemistry, 2014, 78(12): 1997-2007.
doi: 10.1080/09168451.2014.943648
[56] Comer A D, Abraham J P, Steiner A J, et al. Enhancing photosynthetic production of glycogen-rich biomass for use as a fermentation feedstock. Frontiers in Energy Research 2020, 8: 93.
doi: 10.3389/fenrg.2020.00093
[57] Muro-Pastor M I, Cutillas-Farray A, Perez-Rodriguez L, et al. CfrA, a novel carbon flow regulator, adapts carbon metabolism to nitrogen deficiency in cyanobacteria. Plant Physiology, 2020, 184(4): 1792-1810.
doi: 10.1104/pp.20.00802 pmid: 32900980
[1] 武志杰,马文豪,董哲岳,吴小兵,杨怡姝,盛望. AAV载体介导的蓬佩病模型小鼠体内基因治疗研究*[J]. 中国生物工程杂志, 2022, 42(7): 24-34.
[2] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[3] 任自强,王梦灿,张海灵,朱希强,林剑. CHO细胞表达糖蛋白的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 54-65.
[4] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[5] 靳佳琦,闻建平. 合成生物学指导下芽孢杆菌合成环脂肽的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 86-101.
[6] 乔隆,廖亚金,潘瑞远,袁增强. 基于单细胞转录组的基因富集方法分析星形胶质细胞与阿尔茨海默病的关系*[J]. 中国生物工程杂志, 2022, 42(5): 18-26.
[7] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[8] 赵冰,麻淳博,孙冰冰,赵海洋. 智能胰岛素递送系统用于糖尿病治疗的研究进展[J]. 中国生物工程杂志, 2022, 42(5): 81-90.
[9] 宁利敏,朱本伟,姚忠,孙芸. 膜分离技术在寡糖制备与分离中的应用*[J]. 中国生物工程杂志, 2022, 42(4): 102-110.
[10] 田文卓,王国栋,马俊,魏晓凤,王瑞明,李丕武,肖静,汪俊卿. 碱性木聚糖酶研究进展*[J]. 中国生物工程杂志, 2022, 42(3): 124-131.
[11] 甘巧, 孟庆雄. 肠道菌群及其代谢产物与T2DM发病机制及干预措施*[J]. 中国生物工程杂志, 2022, 42(3): 62-71.
[12] 赵炳杰,郭岩彬. 食用菌多糖的提取纯化及生物活性研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 146-159.
[13] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[14] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[15] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.