Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (9): 110-125    DOI: 10.13523/j.cb.2104047
综述     
基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展
黄焕邦1,2,3,吴洋1,2,3,杨友辉1,2,3,王兆官1,2,3,齐浩1,2,3,*()
1 天津大学化工学院 天津 300072
2 系统生物工程教育部重点实验室 天津 300072
3 天津化学化工协同创新中心合成生物学平台 天津 300072
Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase
HUANG Huan-bang1,2,3,WU Yang1,2,3,YANG You-hui1,2,3,WANG Zhao-guan1,2,3,QI Hao1,2,3,*()
1 School of Chemical Engineering and Technology, Tianjin 300072,China
2 Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin 300072,China
3 Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072,China
 全文: PDF(2008 KB)   HTML
摘要:

构筑蛋白质的编码信息存在于高度保守的密码子表中,而生物体仅利用20种天然氨基酸,就能排列组合出不同的蛋白质来行使多种生物学功能。通过合成生物学的飞速发展,使得在蛋白质合成中可控地引入非天然氨基酸成为可能。这极大地拓展了蛋白质的结构和功能,并为生物学工具的开发和生物生理过程的研究提供了便利。具有活性基团的非天然氨基酸可以广泛地应用于蛋白质结构研究、蛋白质功能调控以及新型生物材料构建和医药研发等诸多领域。基因密码子拓展技术利用正交翻译系统,通过重新分配密码子改造中心法则,可以在蛋白质的指定位点引入非天然氨基酸。系统地介绍了目前提升密码子拓展技术插入非天然氨基酸效率的方法,包括tRNA以及氨酰tRNA合成酶的各种突变方法和翻译辅助因子的改造。汇总了利用古细菌酪氨酰tRNA合成酶插入的非天然氨基酸和突变位点并总结了密码子拓展技术在生物医药领域的前沿进展。最后讨论了该项技术目前所面临的挑战,如可利用的密码子数量不多、正交翻译系统的种类有限和非天然氨基酸多插效率低下。希望能够帮助研究者建立适合的非天然氨基酸插入方法并推动密码子拓展技术进一步发展。

关键词: 密码子拓展非天然氨基酸生物正交合成生物学计算机辅助设计    
Abstract:

The coding information used to build proteins exists in highly conserved codon table. In nature, organisms use 20 native amino acids to synthesize proteins of different lengths and orders to perform a variety of biological functions. In recent years, with the rapid development of synthetic biology, it is possible to controllably direct incorporation of non-canonical amino acids in protein synthesis. Non-canonical amino acids with functional side groups could extremely expand the structure and function of proteins, which could also be of benefit in the research of new synthetic biological tools and biological processes. The diversity of side chains serves in many fields, such as protein structure research, functional regulation, constructions of new bio-materials and bio-pharmaceutical industry development. This paper introduces the basic principle of the genetic codon expansion technology, and organizes the efficiency optimization strategies as well as new methods of constructing mutant library. In addition, it also summarizes the cutting-edge progress of the codon expansion technology in the field of bio-medicine. Finally, we summarize the current challenges faced by this technology, such as the limited number of available codons, the limited variety of orthogonal translation systems, and the low efficiency of multiple-incorporation of unnatural amino acids. We hope that these contents could help researchers establish suitable methods for the insertion of unnatural amino acids and promote the further development of this technology.

Key words: Genetic code expansion    Non-canonical amino acid    Bio-orthogonal    Synthetic biology    Computer-aided design
收稿日期: 2021-04-26 出版日期: 2021-09-30
ZTFLH:  Q819  
通讯作者: 齐浩     E-mail: haoq@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄焕邦
吴洋
杨友辉
王兆官
齐浩

引用本文:

黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.

HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase. China Biotechnology, 2021, 41(9): 110-125.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104047        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I9/110

图1  密码子拓展技术
图2  新型aaRS改造方法
图3  利用MjTyrRS/tRNA正交对插入的非天然氨基酸
图4  MjTyrRS突变频次统计
图5  非天然氨基酸在生化领域的应用
氨基酸
序号
氨基酸名称 Mj TyrRS突变位点 年份 DOI
1 4-Propargyloxy-l-phenylalanine(pPR) Y32L,D158S,I159M,L162K,A167H 2021 10.1002/cbic.202000663
2 4-(Trimethylsilyl)phenylalanine
(TMSiPhe)
Y32H,I63G,L65V,H70Q,D158G,I159G,V164G 2020 10.1038/s41467-020-18433-5
3 3-Nitro-tyrosine Y32H,L65L,H70T,D158H,I159A,L162R 2020 10.1016/j.jmb.2020.06.014
4 β-(1-azulenyl)-l-alanine (AzAla) Y32A,L65W,H70G,F108H,Q109N,D158A,L162N 2019 10.1002/anie.201812995
5 Ortho-nitrobenzyl-tyrosine (ONBY) Y32A,L65A,H70N,G105Q,Q109A,D158S,I159A,L162A,A167S,A180Q,D286R 2019 10.3390/ijms20092343
6 p-boronophenylalanine (Bpa) Y32S,L65A,H70M,D158S,L162E,D286R 2018 10.1021/acs.biochem.8b00171
7 Biphenylalanine (BipA) Y32H,D61V,L65H,H70Q,F108W,Q109M,D158G,L162K 2018 10.1073/pnas.1715137115
8 p-Iodo-L-phenylalanine (pIF) Y32L,L69F,E107S,D158P,I159L,L162E,V235I 2017 10.1038/nCHeMBIO.2474
9 p-Nitro-L-phenylalanine (pNF) Y32L,E107S,D158P,I159L,H160N,L162E 2017 10.1038/nCHeMBIO.2474
10 4-Phosphomethyl-L-phenylalanine (Pmp) Y32L,L65A,F108K,Q109H,D158G,L162K 2017 10.1038/nchembio.2405
11 o-Phosphotyrosine (pTyr) Y32L,L65A,F108K,Q109H,D158G,L162K 2017 10.1038/nchembio.2405
12 p-Acetyl-L-phenylalanine Y32L,D158G,I159C,L162R,A167D,R257G (pAcFRS.1.t1) 2015 10.1038/nbt.3372
13 p-Azido-L-phenylalanine Y32T,E107T,F108Y,Q109M,D158P,L162Q,R257G(pAzFRS.2.t1) 2015 10.1038/nbt.3372
氨基酸
序号
氨基酸名称 Mj TyrRS突变位点 年份 DOI
14 4-(2'-Bromoisobutyramido)-
phenylalanine (BibaF)
Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
15 4-Transcycloocten-amidopheylalanine (Tco-amF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
16 Acridon-2-ylalanine (Acd) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
17 4-Acetamidopheylalanine (AmF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
18 4-(6-Methyl-s-tetrazine-3-yl)
aminophenylalanine (Tet-F)
Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
19 4-Aminophenylalanine (AF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
20 4-Bromoisobutyryloxymethyl-l-phenylalanine (BiF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
21 4-Benzoyl-phenylalanine (Bpa) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
22 o-Benzyl-L-tyrosine Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
23 p-Acrylamido-(S)-L-phenylalanine (AcrF) Y32V,L65Y,F108H,Q109G,D158G,L162E,D286R 2014 10.1021/ja502851h
24 p-Vinylsulfonamido -(S)-L-
phenylalanine (VSF)
Y32G,L65Y,F108H,Q109G,D158G,I159L,L162Q,D286R 2014 10.1021/ja502851h
25 2-Amino-3-(6-hydroxy-2-naphthyl)-propanoic acid (NpOH) Y32E,L65T,D158S,I159A,H160P,Y161T,L162Q,A167W,D286R 2013 10.1021/bc400168u
26 7-MethylCoumarinyl-ethylGly Y32E,L65H,A67G,H70G,F108Y,Q109H,D158G,L162G 2011 10.1021/ja106416g
27 p-(2-Tetrazole)-L-phenylalanine Y32I,L65I,Q109M,D158G,L162V,V164G 2010 10.1021/ja104350y
28 o-Nitrobenzyl-2,6-difluoro-L-tyrosine Y32G,L65G,H70M,F108G,D158S,I159M,L162E 2010 10.1021/bi100013s
29 o-Nitrobenzyl-3-difluoro-L-tyrosine Y32G,L65G,H70N,F108G,D158S,I159M,L162N 2010 10.1021/bi100013s
30 o-Nitrobenzyl-2-difluoro-L-tyrosine Y32G,L65G,H70N,F108G,D158S,I159M,L162N 2010 10.1021/bi100013s
31 p-Ethynyl-L-phenylalanine Y32L,L65V,F108W,Q109M,D158G,I159P 2009 10.1021/bi900426d
32 2-Nitro-l-L-phenylalanine Y32G,L65H,A67G,H70G,F108L,Q109S,Y114S,D158T,I159Y,L162D 2009 10.1016/j.chembiol.2009.01.013
33 Thyronine A31V,Y32G,E107P,D158S,I159S 2009 10.1039/b904032c
34 3-Fluoro-4-nitro-p-benzoyl-L-phenylalanine(3F-4nitro-Bpa) Y32G,E107P,D158T,I159S,V164A 2009 10.1039/b904032c
35 4-Nitro-p-benzoyl-L-phenylalanine(4Nitro-Bpa) Y32G,E107P,D158T,I159S,V164A 2009 10.1039/b904032c
36 4-Iodo-p-benzoyl-L-phenylalanine(4I-Bpa) Y32G,E107P,D158T,I159S,V164A 2009 10.1039/b904032c
37 2,6-Difluoro-p-benzoyl-L-
phenylalanine (2,6dF-Bpa)
Y32G,E107P,D158T,I159S 2009 10.1039/b904032c
38 4-Fluoro-p-benzoyl-L-henylalanine(4F-Bpa) A31V,Y32G,E107P,D158S,I159S 2009 10.1039/b904032c
39 p-Benzoyl-L-Phenylalanine(p-Bpa) A31V,Y32G,E107P,D158S,I159S 2009 10.1039/b904032c
40 HQ-Ala Y32V,L65M,H70T,F108R,Q109E,D158S,I159S 2009 10.1021/ja808340b
41 3-Iodo-L-tyrosine H70A,D158T 2009 10.1016/j.str.2009.01.008
氨基酸
序号
氨基酸名称 Mj TyrRS突变位点 年份 DOI
42 p-Cynao-L-phenylalanine Y32L,L65V,F108W,Q109M,D158G,I159P 2009 10.1021/bi900426d
43 p-OCF3-Phe Y32A,L65S,F108Q,H109A,D158A,L162Y 2008 10.1021/ja801602q
44 3-Nitro-L-tyrosine Y32R,L65L,H70L,Q23162M,D158G,I159L,L162H 2008 10.1021/ja710100d
45 PhenylselenoCys Y32L,A67S,H70N,A167Q 2007 10.1002/ange.200702305
46 (2,2'-Bipyridin-5-yl) Ala(BpyAla) Y32G,L65Y,H70A,F108F,Q109Q,Q155E,D158G,I159W,L162S 2007 10.1002/anie.200703397
47 3-Amino-L-tyrosine (NH2Y) Y32Q,L65E,F108G,Q109L,L162Y 2007 10.1021/ja076043y
48 p-Carboxymethyl-L-phenylalanine (pCMF) Y32S,L65A,F108K,Q109H,D158G,L162K 2007 10.1021/cb700083w
49 TfmdPhe Y32I,H70F,E107S,Q109M,D158P,I159L,L162E 2007 10.1002/cbic.200700460
50 Sulfo-L-tyrosine Y32L,L65P,D158G,I159C,L162K 2006 10.1038/nbt1254
51 Phe-4'-azobenzene (AzoPhe) Y32G,L65E,F108A,Q109E,D158G,L162H 2006 10.1021/ja055467u
52 pAMF Y32T,E107T,D158P,I159L,L162A 2006 10.1021/ja061099y
53 p-Methyl-L-phenylalanine Y32L,L65A,F108S,H109H,D158A,L162M 2006 10.1021/ja061099y
54 (7-Hydroxycoumarin-4-yl)ethylGly Y32E,L65H,A67G,H70G,F108Y,Q109H,D158G,L162G 2006 10.1021/ja062666k
55 m-Acetyl-L-phenylalanine Y32L,D158E,I159P,H160Q,Y161G,L162R,G163D 2003 10.1021/bi0300231
56 3,4-Hydroxyl-L-phenylalanine Y32L,A67S,H70N,A167Q 2003 10.1021/ja038242x
57 p-Isopropyl-L-phenylalanine Y32G,T102C,V103A,E107P,D158G,I159Y 2002 10.1038/nbt742
58 O-Allyl-L-tyrosine Y32S,E107T,D158T,I159Y,L162A 2002 10.1038/nbt742
59 3-(2-Naphthyl)-L-alanine Y32L,D158P,I159A,L162Q,A167V 2002 10.1021/ja012307j
60 p-Methoxyl-L-phenylalanine Y32Q,D158A,E107T,L162P 2001 10.1126/science.1060077
表S1  非天然氨基酸结构及其突变位点
[1] Sakamoto S, Hamachi I. Recent progress in chemical modification of proteins. Analytical Sciences, 2019, 35(1):5-27.
doi: 10.2116/analsci.18R003 pmid: 30318491
[2] Nickling J H, Baumann T, Schmitt F J, et al. Antimicrobial peptides produced by selective pressure incorporation of non-canonical amino acids. Journal of Visualized Experiments, 2018(135). DOI: 10.3791/57551.
doi: 10.3791/57551
[3] Baumann T, Schmitt F J, Pelzer A, et al. Engineering ‘golden' fluorescence by selective pressure incorporation of non-canonical amino acids and protein analysis by mass spectrometry and fluorescence. Journal of Visualized Experiments, 2018(134). DOI: 10.3791/57017.
doi: 10.3791/57017
[4] Taskent-Sezgin H, Chung J, Banerjee P S, et al. Azidohomoalanine: a conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. Angewandte Chemie (International Ed in English), 2010, 49(41):7473-7475.
doi: 10.1002/anie.v49:41
[5] Morimoto J, Hayashi Y, Iwasaki K, et al. Flexizymes: their evolutionary history and the origin of catalytic function. Accounts of Chemical Research, 2011, 44(12):1359-1368.
doi: 10.1021/ar2000953 pmid: 21711008
[6] Gunnoo S B, Madder A. Chemical protein modification through cysteine. ChemBioChem, 2016, 17(7):529-553.
doi: 10.1002/cbic.201500667 pmid: 26789551
[7] Murata H, Carmali S, Baker S L, et al. Solid-phase synthesis of protein-polymers on reversible immobilization supports. Nature Communications, 2018, 9(1):1-10.
doi: 10.1038/s41467-017-02088-w
[8] de la Torre D, Chin J W. Reprogramming the genetic code. Nature Reviews Genetics, 2021, 22(3):169-184.
doi: 10.1038/s41576-020-00307-7
[9] Hankore E D, Zhang L Y, Chen Y, et al. Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons. ACS Synthetic Biology, 2019, 8(5):1168-1174.
doi: 10.1021/acssynbio.9b00051 pmid: 30995842
[10] Fredens J, Wang K H, de la Torre D, et al. Total synthesis of Escherichia coli with a recoded genome. Nature, 2019, 569(7757):514-518.
doi: 10.1038/s41586-019-1192-5
[11] Fischer E C, Hashimoto K, Zhang Y, et al. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology, 2020, 16(5):570-576.
doi: 10.1038/s41589-020-0507-z pmid: 32251411
[12] Noren C, Anthony-Cahill S, Griffith M, et al. A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 1989, 244(4901):182-188.
pmid: 2649980
[13] Kwok Y, Wong J T. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Canadian Journal of Biochemistry, 1980, 58(3):213-218.
pmid: 6989454
[14] Wang L, Brock A, Herberich B, et al. Expanding the genetic code of Escherichia coli. Science, 2001, 292(5516):498-500.
pmid: 11313494
[15] Xie J M, Schultz P G. A chemical toolkit for proteins-an expanded genetic code. Nature Reviews Molecular Cell Biology, 2006, 7(10):775-782.
doi: 10.1038/nrm2005
[16] Fechter P, Rudinger-Thirion J, Tukalo M, et al. Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNA(Tyr) are conserved but expressed differently. European Journal of Biochemistry, 2001, 268(3):761-767.
pmid: 11168416
[17] Steer B A, Schimmel P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase. Journal of Biological Chemistry, 1999, 274(50):35601-35606.
pmid: 10585437
[18] Richardson C J, First E A. Hyperactive editing domain variants switch the stereospecificity of tyrosyl-tRNA synthetase. Biochemistry, 2016, 55(17):2526-2537.
doi: 10.1021/acs.biochem.6b00157 pmid: 27064538
[19] Wang L, Schultz P G. A general approach for the generation of orthogonal tRNAs. Chemistry & Biology, 2001, 8(9):883-890.
doi: 10.1016/S1074-5521(01)00063-1
[20] Wang L, Xie J M, Schultz P G. Expanding the genetic code. Annual Review of Biophysics and Biomolecular Structure, 2006, 35(1):225-249.
doi: 10.1146/annurev.biophys.35.101105.121507
[21] Kobayashi T, Nureki O, Ishitani R, et al. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nature Structural & Molecular Biology, 2003, 10(6):425-432.
doi: 10.1038/nsb934
[22] Zhang Y, Wang L, Schultz P G, et al. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine. Protein Science, 2005, 14(5):1340-1349.
pmid: 15840835
[23] Tian Y S, Xu J, Zhao W, et al. Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling. Scientific Reports, 2015, 5:15495.
doi: 10.1038/srep15495
[24] Ryu Y, Schultz P G. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nature Methods, 2006, 3(4):263-265.
doi: 10.1038/nmeth864
[25] Young T S, Ahmad I, Yin J, et al. An enhanced system for unnatural amino acid mutagenesis in E. coli. Journal of Molecular Biology, 2010, 395(2):361-374.
doi: 10.1016/j.jmb.2009.10.030
[26] Chatterjee A, Sun S B, Furman J L, et al. A versatile platform for single-and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry, 2013, 52(10):1828-1837.
doi: 10.1021/bi4000244 pmid: 23379331
[27] Singh V, Braddick D. Recent advances and versatility of MAGE towards industrial applications. Systems and Synthetic Biology, 2015, 9(1):1-9.
[28] Amiram M, Haimovich A D, Fan C G, et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature Biotechnology, 2015, 33(12):1272-1279.
doi: 10.1038/nbt.3372
[29] Badran A H, Liu D R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nature Communications, 2015, 6:8425.
doi: 10.1038/ncomms9425 pmid: 26443021
[30] Bryson D I, Fan C G, Guo L T, et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nature Chemical Biology, 2017, 13(12):1253-1260.
doi: 10.1038/nchembio.2474 pmid: 29035361
[31] Sun R H, Zheng H, Fang Z Z, et al. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-l-phenylalanine. Biochemical and Biophysical Research Communications, 2010, 391(1):709-715.
doi: 10.1016/j.bbrc.2009.11.125
[32] Baumann T, Hauf M, Richter F, et al. Computational aminoacyl-tRNA synthetase library design for photocaged tyrosine. International Journal of Molecular Sciences, 2019, 20(9):2343.
doi: 10.3390/ijms20092343
[33] Duan B Y, Sun Y F. Integration of machine learning improves the prediction accuracy of molecular modelling for M. jannaschii tyrosyl-tRNA synthetase substrate specificity. Progress in Biochemistry and Biophysics, 2020. DOI: org/10.1101/2020.06.26.174524.
doi: org/10.1101/2020.06.26.174524
[34] Cervettini D, Tang S, Fried S D, et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nature Biotechnology, 2020, 38(8):989-999.
doi: 10.1038/s41587-020-0479-2 pmid: 32284585
[35] Guo J T, Melançon C E, Lee H S, et al. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angewandte Chemie (International Ed in English), 2009, 48(48):9148-9151.
doi: 10.1002/anie.200904035
[36] Gan R, Perez J G, Carlson E D, et al. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins. Biotechnology and Bioengineering, 2017, 114(5):1074-1086.
doi: 10.1002/bit.v114.5
[37] Fan C G, Ip K, Söll D. Expanding the genetic code of Escherichia coli with phosphotyrosine. FEBS Letters, 2016, 590(17):3040-3047.
doi: 10.1002/1873-3468.12333
[38] Haruna K I, Alkazemi M H, Liu Y C, et al. Engineering the elongation factor Tu for efficient selenoprotein synthesis. Nucleic Acids Research, 2014, 42(15):9976-9983.
doi: 10.1093/nar/gku691
[39] Wang K H, Neumann H, Peak-Chew S Y, et al. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nature Biotechnology, 2007, 25(7):770-777.
doi: 10.1038/nbt1314
[40] Neumann H, Wang K H, Davis L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature, 2010, 464(7287):441-444.
doi: 10.1038/nature08817
[41] Maini R, Nguyen D T, Chen S X, et al. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. Bioorganic & Medicinal Chemistry, 2013, 21(5):1088-1096.
doi: 10.1016/j.bmc.2013.01.002
[42] Dedkova L M, Fahmi N E, Paul R, et al. Β-puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids. Biochemistry, 2012, 51(1):401-415.
doi: 10.1021/bi2016124 pmid: 22145951
[43] Dedkova L M, Fahmi N E, Golovine S Y, et al. Enhanced d-amino acid incorporation into protein by modified ribosomes. Journal of the American Chemical Society, 2003, 125(22):6616-6617.
pmid: 12769555
[44] Orelle C, Carlson E D, Szal T, et al. Protein synthesis by ribosomes with tethered subunits. Nature, 2015, 524(7563):119-124.
doi: 10.1038/nature14862
[45] Fried S D, Schmied W H, Uttamapinant C, et al. Ribosome subunit stapling for orthogonal translation in E.coli. Angewandte Chemie (International Ed in English), 2015, 54(43):12791-12794.
doi: 10.1002/anie.201506311
[46] Luo X Z, Fu G S, Wang R E, et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nature Chemical Biology, 2017, 13(8):845-849.
doi: 10.1038/nchembio.2405
[47] Zhang M S, Brunner S F, Huguenin-Dezot N, et al. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nature Methods, 2017, 14(7):729-736.
doi: 10.1038/nmeth.4302
[48] Ratnayake N D, Theisen C, Walter T, et al. Whole-cell biocatalytic production of variously substituted β-aryl- and β-heteroaryl-β-amino acids. Journal of Biotechnology, 2016, 217:12-21.
doi: 10.1016/j.jbiotec.2015.10.012 pmid: 26528624
[49] Short G F, Golovine S Y, Hecht S M. Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. Biochemistry, 1999, 38(27):8808-8819.
pmid: 10393557
[50] Yin G, Stephenson H T, Yang J H, et al. RF1 attenuation enables efficient non-natural amino acid incorporation for production of homogeneous antibody drug conjugates. Scientific Reports, 2017, 7:3026.
doi: 10.1038/s41598-017-03192-z
[51] Loscha K V, Herlt A J, Qi R H, et al. Multiple-site labeling of proteins with unnatural amino acids. Angewandte Chemie International Edition, 2012, 51(9):2243-2246.
doi: 10.1002/anie.201108275
[52] Sando S, Ogawa A, Nishi T, et al. In vitro selection of RNA aptamer against Escherichia coli release factor 1. Bioorganic & Medicinal Chemistry Letters, 2007, 17(5):1216-1220.
doi: 10.1016/j.bmcl.2006.12.013
[53] Wu Y, Wang Z G, Qiao X, et al. Emerging methods for efficient and extensive incorporation of non-canonical amino acids using cell-free systems. Frontiers in Bioengineering and Biotechnology, 2020, 8:863.
doi: 10.3389/fbioe.2020.00863
[54] Agafonov D E, Huang Y W, Grote M, et al. Efficient suppression of the amber codon in E. coli in vitro translation system. FEBS Letters, 2005, 579(10):2156-2160.
pmid: 15811334
[55] Szkaradkiewicz K, Nanninga M, Nesper-Brock M, et al. RNA aptamers directed against release factor 1 from Thermus thermophilus. FEBS Letters, 2002, 514(1):90-95.
pmid: 11904188
[56] Lajoie M J, Rovner A J, Goodman D B, et al. Genomically recoded organisms expand biological functions. Science, 2013, 342(6156):357-360.
doi: 10.1126/science.1241459 pmid: 24136966
[57] Seki E, Yanagisawa T, Yokoyama S. Cell-free protein synthesis for multiple site-specific incorporation of noncanonical amino acids using cell extracts from RF-1 deletion E. coli strains. Noncanonical Amino Acids, 2018, 1728:49-65. DOI: 10.1007/978-1-4939-7574-7_3.
doi: 10.1007/978-1-4939-7574-7_3
[58] Mukai T, Hoshi H, Ohtake K, et al. Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Scientific Reports, 2015, 5:9699.
doi: 10.1038/srep09699
[59] Mukai T, Hayashi A, Iraha F, et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Research, 2010, 38(22):8188-8195.
doi: 10.1093/nar/gkq707
[60] Jiang X Y, Hao X, Jing L L, et al. Recent applications of click chemistry in drug discovery. Expert Opinion on Drug Discovery, 2019, 14(8):779-789.
doi: 10.1080/17460441.2019.1614910
[61] Li J, Chen P R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 2016, 12(3):129-137.
doi: 10.1038/nchembio.2024
[62] Knall A C, Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chemical Society Reviews, 2013, 42(12):5131.
doi: 10.1039/c3cs60049a
[63] Wang C L, Ikhlef D, Kahlal S, et al. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coordination Chemistry Reviews, 2016, 316:1-20.
doi: 10.1016/j.ccr.2016.02.010
[64] Kacprzak K, Skiera I, Piasecka M, et al. Alkaloids and isoprenoids modification by copper(I)-catalyzed huisgen 1, 3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chemical Reviews, 2016, 116(10):5689-5743.
doi: 10.1021/acs.chemrev.5b00302 pmid: 27115045
[65] Devaraj N K. The future of bioorthogonal chemistry. ACS Central Science, 2018, 4(8):952-959.
doi: 10.1021/acscentsci.8b00251 pmid: 30159392
[66] Delaittre G, Goldmann A S, Mueller J O, et al. Efficient photochemical approaches for spatially resolved surface functionalization. Angewandte Chemie International Edition, 2015, 54(39):11388-11403.
doi: 10.1002/anie.v54.39
[67] Jewett J C, Bertozzi C R. Cu-free click cycloaddition reactions in chemical biology. Chemical Society Reviews, 2010, 39(4):1272.
pmid: 20349533
[68] Seitchik J L, Peeler J C, Taylor M T, et al. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. Journal of the American Chemical Society, 2012, 134(6):2898-2901.
doi: 10.1021/ja2109745 pmid: 22283158
[69] Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 2013, 113(7):4905-4979.
doi: 10.1021/cr200409f pmid: 23531040
[70] Grammel M, Hang H C. Chemical reporters for biological discovery. Nature Chemical Biology, 2013, 9(8):475-484.
doi: 10.1038/nchembio.1296 pmid: 23868317
[71] Park H S, Hohn M J, Umehara T, et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science, 2011, 333(6046):1151-1154.
doi: 10.1126/science.1207203
[72] Bannister A J, Kouzarides T. Regulation of chromatin by histone modifications. Cell Research, 2011, 21(3):381-395.
doi: 10.1038/cr.2011.22 pmid: 21321607
[73] Neumann H, Hazen J L, Weinstein J, et al. Genetically encoding protein oxidative damage. Journal of the American Chemical Society, 2008, 130(12):4028-4033.
doi: 10.1021/ja710100d pmid: 18321101
[74] Tsao M L, Summerer D, Ryu Y, et al. The genetic incorporation of a distance probe into proteins in Escherichia coli. Journal of the American Chemical Society, 2006, 128(14):4572-4573.
doi: 10.1021/ja058262u
[75] Taskent-Sezgin H, Chung J, Patsalo V, et al. Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study. Biochemistry, 2009, 48(38):9040-9046.
doi: 10.1021/bi900938z pmid: 19658436
[76] Schultz K C, Supekova L, Ryu Y, et al. A genetically encoded infrared probe. Journal of the American Chemical Society, 2006, 128(43):13984-13985.
doi: 10.1021/ja0636690
[77] Liu Q, He Q T, Lyu X X, et al. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1 H-NMR probe. Nature Communications, 2020, 11:4857.
doi: 10.1038/s41467-020-18433-5 pmid: 32978402
[78] Sakamoto K, Murayama K, Oki K, et al. Genetic encoding of 3-iodo-l-tyrosine in Escherichia coli for single-wavelength anomalous dispersion phasing in protein crystallography. Structure, 2009, 17(3):335-344.
doi: 10.1016/j.str.2009.01.008 pmid: 19278648
[79] Liu W S, Brock A, Chen S, et al. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nature Methods, 2007, 4(3):239-244.
doi: 10.1038/nmeth1016
[80] Hershewe J M, Warfel K F, Iyer S M, et al. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nature Communications, 2021, 12:2363.
doi: 10.1038/s41467-021-22329-3 pmid: 33888690
[81] Hershewe J, Kightlinger W, Jewett M C. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. Journal of Industrial Microbiology & Biotechnology, 2020, 47(11):977-991.
[82] Shah U H, Toneatti R, Gaitonde S A, et al. Site-specific incorporation of genetically encoded photo-crosslinkers locates the heteromeric interface of a GPCR complex in living cells. Cell Chemical Biology, 2020, 27(10): 1308-1317.e4.
doi: 10.1016/j.chembiol.2020.07.006
[83] Welegedara A, Adams L A, Huber T, et al. Site-specific incorporation of selenocysteine by genetic encoding as a photocaged unnatural amino acid. Bioconjugate Chemistry, 2018, 29(7):2257-2264.
doi: 10.1021/acs.bioconjchem.8b00254 pmid: 29874064
[84] Zheng Y N, Gilgenast M J, Hauc S, et al. Capturing post-translational modification-triggered protein-protein interactions using dual noncanonical amino acid mutagenesis. ACS Chemical Biology, 2018, 13(5):1137-1141.
doi: 10.1021/acschembio.8b00021
[85] Xue G, Wang K, Zhou D L, et al. Light-induced protein degradation with photocaged PROTACs. Journal of the American Chemical Society, 2019, 141(46):18370-18374.
doi: 10.1021/jacs.9b06422
[86] Wang J, Liu Y, Liu Y J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature, 2019, 569(7757):509-513.
doi: 10.1038/s41586-019-1188-1
[87] Huang Y J, Liu T. Therapeutic applications of genetic code expansion. Synthetic and Systems Biotechnology, 2018, 3(3):150-158.
doi: 10.1016/j.synbio.2018.09.003
[88] Axup J Y, Bajjuri K M, Ritland M, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. PNAS, 2012, 109(40):16101-16106.
doi: 10.1073/pnas.1211023109 pmid: 22988081
[89] Si L L, Xu H, Zhou X Y, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science, 2016, 354(6316):1170-1173.
doi: 10.1126/science.aah5869
[90] Anderson J C, Wu N, Santoro S W, et al. An expanded genetic code with a functional quadruplet codon. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20):7566-7571.
[91] Grasso K T, Yeo M J R, Hillenbrand C M, et al. Structural robustness affects the engineerability of aminoacyl-tRNA synthetases for genetic code expansion. Biochemistry, 2021, 60(7):489-493.
doi: 10.1021/acs.biochem.1c00056
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[3] 廖丹妮,张昭旸,靳瑾,李霞,贾斌. 微生物tRNA与密码子系统应用研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 64-73.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[13] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[14] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.