Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 100-109    DOI: 10.13523/j.cb.2106043
综述     
群体感应系统在合成生物学中的应用*
郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩()
东北林业大学生命科学学院 哈尔滨 150040
Applications of Quorum Sensing Systems in Synthetic Biology
ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan()
School of Life Science, Northeast Forestry University, Harbin 150040, China
 全文: PDF(988 KB)   HTML
摘要:

群体感应(quorum sensing, QS)是一种广泛存在于多种微生物中的胞间通信系统,细菌产生的自诱导物随着种群密度的增加而积累,诱导细菌对种群密度的响应,调节生物膜的形成或特定基因的表达。近年来,随着群体感应系统原理与关键元件的逐渐清晰,应用合成生物学手段进行多技术联合以及多系统间正交性设计具有极大的发展潜力,群体感应系统已成为合成生物学家动态调控胞间通信常用的重要手段之一。在群体感应是细胞-细胞间通信系统的基础上,对多种群体感应系统的联合设计在生物基化学品生产中自动化调控的研究进展进行综述;并针对群体感应系统在生物电化学转化领域实现双向生物信息交流的应用进行总结;同时归纳了医学领域中群体感应系统的动态调控功能与多种疾病诊断及治疗结合的研究进展,讨论了群体感应系统在多细胞通信和实际应用等方面的发展前景。

关键词: 群体感应胞间通信合成生物学动态调控    
Abstract:

Quorum sensing (QS) is an intercellular communication system found in many microorganisms. The autoinducers accumulate as the bacteria population grows. It can promote bacteria to acclimate current population density, regulate the formation of biofilm, and modulate the expression of specific genes. In recent years, researchers have been working on the principle of operation as well as the key elements of QS system and now we understand much more about them. These results would help us in designing a promising multi-system work using multiple methods of synthetic biology, and it can help researchers to take control of intercellular communication dynamically, which is particularly important. On the basis that quorum sensing is a cell-cell communication system, the research progress of the joint design of multiple quorum sensing systems in the automatic regulation of bio based chemicals production is reviewed. The application of quorum sensing system to realize two-way biological information exchange in the field of bioelectrochemical transformation is summarized. At the same time, this article summarizes the research progress of the combination of the dynamic regulation function of quorum sensing system and the diagnosis and treatment of various diseases in the medical field, and the expectation of development prospect.

Key words: Quorum sensing    Intercellular communication    Synthetic biology    Dynamically regulate
收稿日期: 2021-06-23 出版日期: 2021-12-01
ZTFLH:  Q819  
基金资助: * 中央高校基本科研业务费专项(2572019BD01);国家级大学生创新创业训练计划(202010225122)
通讯作者: 李晓岩     E-mail: xyli821187@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑义
郭世英
隋凤翔
杨骐羽
卫雅萱
李晓岩

引用本文:

郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.

ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology. China Biotechnology, 2021, 41(11): 100-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106043        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/100

图1  群体感应系统的广义模型[1]
图2  利用群体感应系统调控工程菌在生物基化学品生产、生物电化学转化以及医学领域的应用
[1] Yi L, Dong X, Grenier D, et al. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. Science of the Total Environment, 2021, 763:143031.
doi: 10.1016/j.scitotenv.2020.143031
[2] Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104(1):313-322.
doi: 10.1128/jb.104.1.313-322.1970 pmid: 5473898
[3] Li Z J, Rosenbaum M A, Venkataraman A, et al. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chemical Communications, 2011, 47(11):3060.
doi: 10.1039/c0cc05037g
[4] Taylor A F, Tinsley M R, Wang F, et al. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 2009, 323(5914):614-617.
doi: 10.1126/science.1166253
[5] Kim M K, Zhao A S, Wang A, et al. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology, 2017, 2:17080.
doi: 10.1038/nmicrobiol.2017.80
[6] Swem L R, Swem D L, O’Loughlin C T, et al. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Molecular Cell, 2009, 35(2):143-153.
doi: 10.1016/j.molcel.2009.05.029 pmid: 19647512
[7] Minogue T D, Trebra M W V, Bernhard F, et al. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Molecular Microbiology, 2002, 44(6):1625-1635.
doi: 10.1046/j.1365-2958.2002.02987.x
[8] Banerjee G, Ray A K. Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiologica et Immunologica Hungarica, 2017, 64(4):439-453.
doi: 10.1556/030.64.2017.040 pmid: 29243493
[9] Xavier K B, Bassler B L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. Journal of Bacteriology, 2005, 187(1):238-248.
doi: 10.1128/JB.187.1.238-248.2005
[10] Holoidovsky L, Meijler M M. Synthesis and evaluation of indole-based autoinducers on quorum sensing in Vibrio cholerae. ACS Infectious Diseases, 2020, 6(4):572-576.
doi: 10.1021/acsinfecdis.9b00409 pmid: 32182033
[11] Sperandio V, Torres A G, Jarvis B, et al. Bacteria-host communication: the language of hormones. PNAS, 2003, 100(15):8951-8956.
pmid: 12847292
[12] Hobom B. Genchirurgie: an der Schwelle zur synthetischen biologie (Gene surgery: on the threshold of synthetic biology). Med Klin, 1980, 75(24):834-841.
pmid: 6160378
[13] Keller E F. What does synthetic biology have to do with biology? BioSocieties, 2009, 4(2-3):291-302.
doi: 10.1017/S1745855209990123
[14] Basu S, Mehreja R, Thiberge S, et al. Spatiotemporal control of gene expression with pulse-generating networks. PNAS, 2004, 101(17):6355-6360.
doi: 10.1073/pnas.0307571101
[15] Stricker J, Cookson S, Bennett M R, et al. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456(7221):516-519.
doi: 10.1038/nature07389
[16] Hu Y D, Yang Y, Katz E, et al. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chemical Communications (Cambridge, England), 2015, 51(20):4184-4187.
doi: 10.1039/C5CC00026B
[17] Andrianantoandro E, Basu S, Karig D K, et al. Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2006, 2: 2006.0028.
[18] Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nature Medicine, 2019, 25(7):1057-1063.
doi: 10.1038/s41591-019-0498-z pmid: 31270504
[19] Saeidi N, Wong C K, Lo T M, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular Systems Biology, 2011, 7:521.
doi: 10.1038/msb.2011.55
[20] Miller E L, Kjos M, Abrudan M I, et al. Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. The ISME Journal, 2018, 12(10):2363-2375.
doi: 10.1038/s41396-018-0178-x
[21] Li L, Wei K K, Liu X C, et al. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metabolic Engineering, 2019, 52:153-167.
doi: 10.1016/j.ymben.2018.12.001
[22] Sung L Y, Wu M Y, Lin M W, et al. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Biotechnology and Bioengineering, 2019, 116(5):1066-1079.
doi: 10.1002/bit.26915 pmid: 30636321
[23] Du P, Zhao H W, Zhang H Q, et al. De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation. Nature Communications, 2020, 11:4226.
doi: 10.1038/s41467-020-17993-w
[24] Halleran A D, Murray R M. Cell-free and in vivo characterization of lux, Las, and rpa quorum activation systems in E. coli. ACS Synthetic Biology, 2018, 7(2):752-755.
doi: 10.1021/acssynbio.7b00376 pmid: 29120612
[25] Kylilis N, Tuza Z A, Stan G B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nature Communications, 2018, 9:2677.
doi: 10.1038/s41467-018-05046-2
[26] Zeng W Q, Du P, Lou Q L, et al. Rational design of an ultrasensitive quorum-sensing switch. ACS Synthetic Biology, 2017, 6(8):1445-1452.
doi: 10.1021/acssynbio.6b00367
[27] Chubukov V, Gerosa L, Kochanowski K, et al. Coordination of microbial metabolism. Nature Reviews Microbiology, 2014, 12(5):327-340.
doi: 10.1038/nrmicro3238 pmid: 24658329
[28] Terrell J L, Wu H C, Tsao C Y, et al. Nano-guided cell networks as conveyors of molecular communication. Nature Communications, 2015, 6:8500.
doi: 10.1038/ncomms9500
[29] Osmekhina E, Jonkergouw C, Schmidt G, et al. Controlled communication between physically separated bacterial populations in a microfluidic device. Communications Biology, 2018, 1:97.
doi: 10.1038/s42003-018-0102-y
[30] Ha J H, Hauk P, Cho K, et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Science Advances, 2018, 4(6): eaar7063.
[31] Stephens K, Pozo M, Tsao C Y, et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nature Communications, 2019, 10:4129.
doi: 10.1038/s41467-019-12027-6
[32] Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3):647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[33] Liu Y L, Chen J J, Crisante D, et al. Dynamic cell programming with quorum sensing-controlled CRISPRi circuit. ACS Synthetic Biology, 2020, 9(6):1284-1291.
doi: 10.1021/acssynbio.0c00148
[34] Alnahhas R N, Sadeghpour M, Chen Y, et al. Majority sensing in synthetic microbial consortia. Nature Communications, 2020, 11(1):1-10.
doi: 10.1038/s41467-019-13993-7
[35] Jiang W, He X Y, Luo Y, et al. Two completely orthogonal quorum sensing systems with self-produced autoinducers enable automatic delayed cascade control. ACS Synthetic Biology, 2020, 9(9):2588-2599.
doi: 10.1021/acssynbio.0c00370 pmid: 32786361
[36] Niederholtmeyer H, Chaggan C, Devaraj N K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nature Communications, 2018, 9:5027.
doi: 10.1038/s41467-018-07473-7 pmid: 30487584
[37] Wu J J, Bao M J, Duan X G, et al. Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states. Nature Communications, 2020, 11:5521.
doi: 10.1038/s41467-020-19432-2
[38] Bao S H, Li W Y, Liu C J, et al. Quorum-sensing based small RNA regulation for dynamic and tuneable gene expression. Biotechnology Letters, 2019, 41(10):1147-1154.
doi: 10.1007/s10529-019-02719-w
[39] Gupta A, Reizman I M B, Reisch C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nature Biotechnology, 2017, 35(3):273-279.
doi: 10.1038/nbt.3796
[40] Doong S J, Gupta A, Prather K L J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. PNAS, 2018, 115(12):2964-2969.
doi: 10.1073/pnas.1716920115
[41] Liu Y, Li J Y, Tschirhart T, et al. Connecting biology to electronics: molecular communication via redox modality. Advanced Healthcare Materials, 2017, 6(24):1700789.
doi: 10.1002/adhm.v6.24
[42] Kaberniuk A A, Shemetov A A, Verkhusha V V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nature Methods, 2016, 13(7):591-597.
doi: 10.1038/nmeth.3864 pmid: 27159085
[43] Pudasaini A, El-Arab K K, Zoltowski B D. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Frontiers in Molecular Biosciences, 2015, 2:18.
doi: 10.3389/fmolb.2015.00018 pmid: 25988185
[44] Dixon T A, Williams T C, Pretorius I S. Sensing the future of bio-informational engineering. Nature Communications, 2021, 12(1):388.
doi: 10.1038/s41467-020-20764-2
[45] Gu M Z, Imlay J A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Molecular Microbiology, 2011, 79(5):1136-1150.
doi: 10.1111/mmi.2011.79.issue-5
[46] Tschirhart T, Kim E, McKay R, et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nature Communications, 2017, 8:14030.
doi: 10.1038/ncomms14030 pmid: 28094788
[47] Bhokisham N, VanArsdale E, Stephens K T, et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nature Communications, 2020, 11:2427.
doi: 10.1038/s41467-020-16249-x
[48] VanArsdale E, Hörnström D, Sjöberg G, et al. A coculture based tyrosine-tyrosinase electrochemical gene circuit for connecting cellular communication with electronic networks. ACS Synthetic Biology, 2020, 9(5):1117-1128.
doi: 10.1021/acssynbio.9b00469 pmid: 32208720
[49] Stephens K, Zakaria F R, VanArsdale E, et al. Electronic signals are electrogenetically relayed to control cell growth and co-culture composition. Metabolic Engineering Communications, 2021, 13:e00176.
doi: 10.1016/j.mec.2021.e00176
[50] Terrell J L, Tschirhart T, Jahnke J P, et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nature Nanotechnology, 2021, 16(6):688-697.
doi: 10.1038/s41565-021-00878-4
[51] Miller C, Gilmore J. Detection of quorum-sensing molecules for pathogenic molecules using cell-based and cell-free biosensors. Antibiotics, 2020, 9(5):259.
doi: 10.3390/antibiotics9050259
[52] Cao H L, Xia T Y, Li Y R, et al. Uncoupled quorum sensing modulates the interplay of virulence and resistance in a multidrug-resistant clinical Pseudomonas aeruginosa isolate belonging to the MLST550 clonal complex. Antimicrobial Agents and Chemotherapy, 2019, 63(4):e01944-e01918.
[53] Wen K Y, Cameron L, Chappell J, et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synthetic Biology, 2017, 6(12):2293-2301.
doi: 10.1021/acssynbio.7b00219
[54] Mimee M, Nadeau P, Hayward A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 2018, 360(6391):915-918.
doi: 10.1126/science.aas9315 pmid: 29798884
[55] Lohse M B, Gulati M, Johnson A D, et al. Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2018, 16(1):19-31.
doi: 10.1038/nrmicro.2017.107
[56] Yin S L, Chang Y J, Deng S P, et al. Screening and identification of marine fungi against bacterial quorum sensing. Chin J Biotech, 2011, 27(9):1337-1346.
[57] Bachtiar E W, Bachtiar B M, Jarosz L M, et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Frontiers in Cellular and Infection Microbiology, 2014, 4:94.
doi: 10.3389/fcimb.2014.00094 pmid: 25101248
[58] Zhang B Z, Ku X G, Zhang X Q, et al. The AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Haemophilus parasuis. Frontiers in Cellular and Infection Microbiology, 2019, 9:62.
doi: 10.3389/fcimb.2019.00062
[59] Fan X, Peng P C, Huang H, et al. Undesirable effects of exogenous N-acyl homoserine lactones on moving bed biofilm reactor treating medium-strength synthetic wastewater. Science of the Total Environment, 2019, 696:134061.
doi: 10.1016/j.scitotenv.2019.134061
[60] Bandara H M H N, Hewavitharana A K, Shaw P N, et al. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. International Journal of Pharmaceutics, 2020, 578:119096.
doi: S0378-5173(20)30080-6 pmid: 32006626
[61] Sedlmayer F, Hell D, Müller M, et al. Designer cells programming quorum-sensing interference with microbes. Nature Communications, 2018, 9(1):1822.
doi: 10.1038/s41467-018-04223-7
[62] Tham E H, Koh E, Common J E A, et al. Biotherapeutic approaches in atopic dermatitis. Biotechnology Journal, 2020, 15(10):e1900322.
[63] Piewngam P, Zheng Y, Nguyen T H, et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 2018, 562(7728):532-537.
doi: 10.1038/s41586-018-0616-y
[64] Danino T, Prindle A, Kwong G A, et al. Programmable probiotics for detection of cancer in urine. Science Translational Medicine, 2015, 7(289): 289ra84.
[65] Din M O, Danino T, Prindle A, et al. Synchronized cycles of bacterial Lysis for in vivo delivery. Nature, 2016, 536(7614):81-85.
doi: 10.1038/nature18930
[66] Hauk P, Stephens K, Virgile C, et al. Homologous quorum sensing regulatory circuit: a dual-input genetic controller for modulating quorum sensing-mediated protein expression in E. coli. ACS Synth Biol, 2020, 9(10):2692-2702.
doi: 10.1021/acssynbio.0c00179
[67] Zhong D, Xu X H, Li Y K, et al. Entirely synthetic bacterial nanomimics for highly-effective tumor suppression and immune elicitation. Nano Today, 2020, 35:100950.
doi: 10.1016/j.nantod.2020.100950
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[13] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.