微生物合成奇数链脂肪酸研究进展*

白松,侯正杰,高庚荣,乔斌,程景胜

中国生物工程杂志 ›› 2022, Vol. 42 ›› Issue (6) : 76-85.

PDF(4214 KB)
PDF(4214 KB)
中国生物工程杂志 ›› 2022, Vol. 42 ›› Issue (6) : 76-85. DOI: 10.13523/j.cb.2201051
综述

微生物合成奇数链脂肪酸研究进展*

作者信息 +

Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms

Author information +
文章历史 +

摘要

奇数链脂肪酸(odd-chain fatty acids,OCFA)在自然界分布广泛但含量低,在食品、医药健康和工业等领域有着巨大的应用潜力。目前获取OCFA的方法主要为提取法和化学合成法,但成本高、效率低,而通过微生物发酵有望实现OCFA大规模工业生产。总结OCFA的应用范围和天然合成OCFA的微生物种类,详述微生物合成OCFA的代谢途径,并从基因工程策略和发酵调控策略两方面综述目前提升OCFA产量的研究现状,旨在为利用合成生物学策略改造和提升微生物合成OCFA的能力提供较为系统的理论依据。

Abstract

Odd-chain fatty acids (OCFAs) are widely distributed in nature, while their level is low. OCFA has huge application potential in the fields of medicine, health, and industry. The current methods of obtaining OCFA are mainly included in the extraction and chemical synthesis, which limits its application due to the higher-cost and the lower-efficiency. Microbial fermentation is one of the most promising strategies for large-scale industrial production. This article briefly discusses the scope of application of OCFA, summarizes the microorganisms that can naturally synthesize OCFA, introduces in detail the related metabolic pathways involved in microbial synthesis of OCFA, and reviews the current strategies of genetic engineering and fermentation regulation for improving OCFA production. Taken together, this summary aims to provide a more systematic and comprehensive theoretical basis for improving OCFA production of microorganism by synthetic biology strategies.

关键词

奇数链脂肪酸 / 微生物发酵 / 合成生物学 / 代谢途径

Key words

Odd-chain fatty acid(OCFA) / Microorganism fermentation / Synthetic biology / Metabolic pathways

引用本文

导出引用
白松, 侯正杰, 高庚荣, . 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85 https://doi.org/10.13523/j.cb.2201051
Song BAI, Zheng-jie HOU, Geng-rong GAO, et al. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85 https://doi.org/10.13523/j.cb.2201051
中图分类号: Q939   
奇数链脂肪酸(odd-chain fatty acids,OCFA)是指碳链长度为奇数的脂肪酸,广泛存在于微生物和动植物中,但含量很低。在食品领域,OCFA可作为食品添加剂使用[1],有研究认为OCFA是潜在的膳食必需化合物[2]。在医药健康领域,OCFA属于高附加值脂肪酸,在人体健康和医学领域有巨大的应用潜力,如抗炎[3]、治疗心肌病[4]或作为生物标志物评估饮食摄入量、冠心病风险和Ⅱ型糖尿病[5-6]。目前针对OCFA生物活性和理化性质的研究日益深入,因此未来可能发现OCFA更多的医用功效。在生物能源领域,生物柴油中加入不同质量和组分的OCFA可以改善生物柴油的质量,提高经济效益。
目前,OCFA的生产方法主要包括化学合成[7]、天然产物提取和微生物发酵[8]。化学合成法和天然产物提取法需要使用大量化学品试剂,成本高且效率低,微生物发酵法则是最有潜力工业化生产OCFA的方法之一。微生物发酵法生产高附加值产物具有成本低、生产周期短和环境友好等优势,与基因工程和发酵调控工艺等手段相结合能够实现对微生物生产性能和发酵状态的精确调控,从而达到高性能生产和高密度发酵的目的。运用基因工程和发酵调控策略提升OCFA产量已有许多报道。基因工程策略主要集中在促进OCFA合成先导物丙酰辅酶A的合成和优化关联代谢途径方面,包括表达关键酶[9]、阻断旁路代谢途径[10]、从头模块化构建合成途径[11]等;发酵调控策略则兼顾了OCFA合成所需最适碳源和发酵工艺调控等方面,如以丙酸等三碳物质为碳源促进丙酰辅酶A合成[12],分批补料发酵[13]优化发酵状态或两相发酵促进产物的及时分离[14]。本文综述了多种能够合成OCFA的微生物及其内源合成途径、基因工程改造和代谢调控策略,并对可深入研究的领域进行讨论。

1 OCFA的应用

近年来,OCFA因药理作用在医药与健康领域受到日益广泛的关注。有研究发现,奇数链脂肪酸可治疗银屑病、过敏或自身免疫性疾病,防止介质释放和抑制淋巴细胞激活[15]。Dojolvi(triheptanoin)是一种高纯度的七碳脂肪酸甘油三酯,在体内能够代谢成丙酰辅酶A,进而合成琥珀酰辅酶A参与到TCA循环(tricarboxylic acid cycle)中,现已作为治疗儿童和成人长链脂肪酸氧化障碍(long chain fatty acids oxidation disorder,LC-FAOD)的药物被FDA(Food and Drug Administration)批准,同时也被研究用于治疗一系列其他代谢紊乱或涉及能量缺乏的疾病[16]。Avis等[17]报道了Pseudozyma flocculosa合成具有抗真菌活性的9-十七烯酸和6-甲基-9-十七烯酸,能够诱导白粉病分生孢子链的快速崩解和一些真菌细胞的细胞质解体,具有作为生物防治剂的应用潜力。OCFA在健康领域可以作为评估膳食摄入的生物标记物。OCFA在人体内是由肠源性丙酸盐内源合成,而丙酸盐又与膳食纤维的摄入呈正相关,因此人体内OCFA的含量与膳食摄入呈正相关[18-19]。Aglago等[20]探讨了血清磷脂FAs(serum phospholipid fatty acids,S-PLFAs)和肥胖指标的关系。通过对372名墨西哥女性的对照研究发现,S-PLFAs中的OCFA(C15:0,C17:0)与所有的肥胖指标呈负相关。在工业应用方面,OCFA及其衍生物作为原料或中间体被广泛应用于生产农药、香料、化妆品、涂料和工业化用品[21]表1对OCFA的应用进行了简要总结。
表1 OCFA应用概括

Table 1 Summary of application of OCFA

OCFA的种类 用途 作用机理 参考文献
十三烷二酸(tridecanedioic acid) 用于合成透明聚酰胺 与4,4'-二氨基二环己基甲烷(4,4'-diaminodicyclohexyl methane,PACM)成盐进行反应 [22]
壬二酸(azelaic acid) 治疗黄褐斑、痤疮病、恶性色素病 竞争性酪氨酸酶抑制剂 [23-24]
(9Z)-9-十七碳烯酸[(9Z)-9-heptadecenoic acid] 治疗牛皮癣、过敏、自身免疫疾病 阻止或减少TNF-α等介质的释放,抑制淋巴细胞活化,刺激巨噬细胞,使炎症过程正常化 [15]
庚烷酸(heptanoate) 抗惊厥、治疗癫痫病;长链脂肪酸氧化紊乱 代谢成C5酮、β-酮戊酸盐或β-羟基戊酸盐,通过一元羧酸转运体进入大脑;提供血管间质代谢物,取代缺乏的三羧酸循环中间体;提高有效的能量代谢,显著改善心脏结构和功能 [4,25]
十五烷酸(pentadecanoic acid);十七烷酸(heptadecanoic acid) 与心血管疾病、肥胖症、Ⅱ型糖尿病的发病呈负相关 OCFA能够降低患Ⅱ型糖尿病的风险;血浆磷脂中的C15:0和C17:0浓度与心血管疾病和肥胖指标呈负相关 [25-26]
十五烷酸(pentadecanoic acid) 评估乳脂摄入的标记物 OCFA来源于瘤胃微生物发酵或微生物从头合成,然后转入宿主动物,表现为胆固醇、磷脂、血清和脂肪组织中的C15:0的相对含量与乳脂摄入呈正相关 [27-28]
十五烷酸(pentadecanoic acid) 对人乳腺癌MCF-7/SC细胞具有选择性的细胞毒性作用 抑制IL-6诱导的JAK2/STAT3信号通路,诱导细胞周期阻滞在sub-G1期,并促进MCF-7/SC中半胱天冬酶依赖性细胞凋亡 [29]
十五烷酸(pentadecanoic acid) 减轻炎症、贫血、血脂异常和体内纤维化 可能是通过与关键代谢调节剂结合和修复线粒体功能 [30]
十一烷酸(undecanoic acid);十五烷酸(pentadecanoic acid) 抑制癌细胞增殖 对组蛋白去乙酰化酶具有抑制作用,能够剂量依赖性地促进MCF-7乳腺癌和A549肺癌细胞中α-微管蛋白的乙酰化 [31]

2 OCFA微生物合成途径

OCFA广泛分布于自然界中,包括植物、海洋生物和微生物等。植物中椴树籽油OCFA的含量占总脂肪酸含量的4.95%~9.39%左右[32]。海洋生物中的OCFA含量略高于植物,如海参中的OCFA含量最高能达30%左右[33]。目前已报道的天然合成OCFA的微生物种类繁多,包括细菌类如大肠杆菌[9]、浑浊红球菌[34]、瘤胃细菌[35];真菌类如念珠酵母(Candida sp.)、多孢克鲁维酵母(Kluyveromyces polysporus)、粘红酵母(Rhodotorula glutinis)、酿酒酵母(Saccharomyces cerevisiae)、圆孢酵母(Torulaspora delbrueckii)、皮状丝孢酵母(Trichosporon cutaneum)、解脂耶氏酵母(Yarrowia lipolytica)[36]、裂殖壶菌[37];放线菌类如链霉菌(Streptomyces cinnamonensis)[38]等。微生物得益于其独特的代谢机制,能够天然合成更高比例的OCFA,因此微生物发酵生产OCFA具有先天的优势。越来越多基因编辑工具的开发和完善[39-40],也使对更多微生物遗传特性的改造成为了可能。通过对微生物进行合理设计改造,将突破原有生产能力的限制,展现巨大的生物合成潜力。图1总结了一些常见脂肪酸的化学结构式。
图1 常见奇数链脂肪酸和偶数链脂肪酸的化学结构

Fig.1 Chemical structures of common odd-chain and even-chain fatty acid

Full size|PPT slide

在许多自然途径中,碳骨架经中心代谢流最先形成,然后从中生成不同化学结构的化合物,进一步被不同的修饰酶修饰后形成具有不同生物活性的物质。葡萄糖经糖酵解途径(embden-meyerhof-parnas pathway,EMP)和磷酸戊糖途径(hexose monophophate pathway,HMP)被转化为丙酮酸,丙酮酸随后进入线粒体氧化脱羧形成乙酰辅酶A(acetyl-CoA)。乙酰辅酶A经乙酰辅酶A羧化酶催化与二氧化碳反应生成丙二酰辅酶A(malonyl-CoA)。丙二酰辅酶A由丙二酰辅酶A酰基载体蛋白(malonyl-CoA-ACP)转酰基酶催化生成丙二酰-ACP(malonyl-ACP),丙二酰-ACP和乙酰辅酶A在脂肪酸合成链延长循环中合成OCFA。丙酰辅酶A是OCFA合成的关键前体物,促进丙酰辅酶A的合成被认为是提升OCFA产量的有效策略[41],相关的研究包括改造局部代谢途径增大流向丙酰辅酶A的代谢流,阻断丙酰辅酶A的旁路代谢和全局代谢优化增强总体代谢强度。图2Y. lipolytica为例阐明了脂肪酸内源合成及代谢机制,并对相关功能基因进行简要说明。
图2 Y. lipolytica中脂肪酸内源合成及代谢途径

Fig.2 Endogenous synthesis and metabolic pathways of fatty acids in Y. lipolytica

Bolded blue font indicates important intermediate metabolites of the odd-chain fatty acid synthesis pathway; Blue genes indicate overexpression targets; red genes indicate knockout targets; GPD1, encoding NAD+-dependent glycerol-3-phopshate dehydrogenase; GUT2, encoding glycerol-3-phosphate dehydrogenase; DGA1/DGA2, encoding diacylglycerol transferase; LRO1, encoding triacylglycerol synthases; TGL3/TGL4, encoding triacylglycerol lipases; FAA1, encoding acyl-CoA synthetases; PXA1/PXA2, encoding peroxisomal acyl-CoA transporter; POX1-6, encoding the six acyl-CoA oxidases; PEX10, encoding peroxisomal membrane E3 ubiquitin ligase; MFE1, encoding the multifunctional enzyme; POT1, encoding peroxisomal 3-oxoacyl-CoA-thiolase; ACS1, encoding acetyl-CoA synthetase; ACC1, encoding acetyl-CoA carboxylase; ACL1, encoding ATP-citrate lyase genes; PHD1, encoding 2-methylcitrate dehydratase

Full size|PPT slide

在某些植物中存在α-氧化将偶数链脂肪酸脱氢、脱羧形成脂肪醛,然后在水的参与下氧化脱氢形成OCFA及其衍生物[42]。借鉴上述思路,有报道在大肠杆菌和酵母中表达α-双加氧酶,将中长链的脂肪酸氧化为2-氢过氧脂肪酸,随后脱羧形成奇数链的脂肪醛或脂肪醇[43-44]。OCFA的合成路径中存在一些关键的限速酶,如乙酰辅酶A羧化酶、丙酰辅酶A合酶、β-酮脂酰-ACP合成酶[45],这些酶的表达水平对于OCFA的合成有着重要影响。为实现OCFA的高效合成,不仅要对关键酶和代谢途径进行改造,更要对全局或局部代谢网络进行调控与优化,消除或弱化胁迫因子和平衡产物合成与微生物生长的关系,这也是目前相关研究的热点。

3 工程策略促进微生物合成OCFA

3.1 基因工程策略

在分子水平上对基因进行操作改变遗传特性是目前提升OCFA产量的强有力手段。丙酮酸是碳代谢流的重要中间物,也是OCFA合成的关键前体物。丙酮酸经柠檬酸循环合成乙酰辅酶A,乙酰辅酶A与丙二酰-ACP在β-酮脂酰-ACP合酶催化下反应合成乙酰乙酰ACP,这也是脂肪酸链延长的起始反应。某些情况下,β-酮脂酰-ACP合酶也能催化丙酰辅酶A和丙二酰-ACP反应生成乙酰乙酰ACP(图3)。因此,OCFA的合成既受到细胞整体代谢强度的影响,也受到一些关键酶和调节基因的调控,并且一些支路代谢途径也会影响OCFA的合成。针对这些影响因素,通过基因工程方法对微生物进行理性改造是目前调控OCFA合成的重要手段[8]。利用基因工程增强OCFA合成的研究主要集中在四个方面: (1)增强重要前体物的合成和积累; (2)阻断脂肪酸降解和推动三酰甘油(triacylglycerol,TAG)合成;(3)模块化重构相关合成途径;(4)关键酶的表达调控。
图3 脂肪酸合成起始路径

Fig.3 The initiation pathway of fatty acid synthesis

accABCD, encoding acetyl-CoA carboxylase; fabA, encoding 3-hydroxydecanoyl-ACP dehydratase; fabB, encoding beta-ketoacyl-ACP synthase; fabD, encoding malonyl-CoA: ACP transacylase; fabF, encoding 3-oxoacyl-ACP synthase Ⅱ; fabG, encoding 3-oxoacyl-ACP reductase; fabH, encoding beta-ketoacyl-ACP synthase III; fabI, encoding enoyl-ACP reductase

Full size|PPT slide

3.1.1 增强重要前体物的合成和积累

丙酰辅酶A是OCFA合成的重要前体物,因此所有提升丙酰辅酶A合成的手段都能促进OCFA的合成。针对促进OCFA合成的丙酰辅酶A相关代谢途径包括甲基丙二酰辅酶A途径、苏氨酸途径、丙酸途径、柠檬酸/2-氧代丁酸途径、天冬氨酸/2-氧代丁酸途径、新型3-羟基丙酸盐途径等。有研究在培养基中补加0.5%~1.5%(v/v)的1-丙醇,使Rhodococcus opacus PD630的油脂产量由1.27 g/L增加至1.31~1.61 g/L,其中OCFA含量增加46.7%~55.1%[34]。检测中间代谢产物和转录组分析表明,1-丙醇通过甲基丙二酰辅酶A途径被R. opacus PD630同化。当环境中氮源有限时,丙酰辅酶A被转化为丙酰-酰基载体蛋白-ACP作为脂肪酸合成延长过程中的先导物,然后在循环中加入奇数个丙酰基-ACP时,就能促进OCFA的合成。苏氨酸位于丙酰辅酶A合成途径的上游,苏氨酸合成基因的表达上调曾被用于提高大肠杆菌中丙酰辅酶A的积累。Lee等[46]发现通过在大肠杆菌中引入苏氨酸合成途径可以增加OCFA的水平,尤其在同时表达突变高丝氨酸脱氢酶时,大肠杆菌中OCFA的比例从小于1%增至18%。Tseng等[47]通过过表达大肠杆菌thrAfrBC操纵子和ilvAfr基因,上调苏氨酸的生物合成,构建了一条由葡萄糖或甘油合成丙酰辅酶A的途径。
通过丙酸途径促进丙酰辅酶A的积累是最早用于提升OCFA产量的前体工程策略。Ingram等[48]研究表明,外源性的丙酸可以作为OCFA合成的先导物,丙酸可以通过丙酸辅酶A合酶转化为丙酰辅酶A,丙酰辅酶A与丙二酰辅酶A在OCFA合成的第一步缩合。有研究通过增强Y. lipolytica中三碳(丙酰辅酶A)和五碳(β-酮戊酰辅酶A)中间产物的积累以提高OCFA的合成。通过评估不同来源的丙酰辅酶A活化酶,如丙酰辅酶A转移酶(CppctRepct)或丙酰辅酶A合成酶(SeprpE)对OCFA合成的影响,结合表达β-酮脂酰辅酶A硫解酶平衡乙酰辅酶A和丙酰辅酶A的前体,在优化C/N比的培养基中获得了1.87 g/L的OCFA产量,这也是目前为止在酵母中最高的产量报道[49]。在Y. lipolytica中,Park等[10]通过敲除编码2-甲基柠檬酸脱水酶的合成基因PHD1,抑制2-甲基柠檬酸途径增强丙酰辅酶A的积累,使OCFA在总脂肪酸中的比例提高至46.82%。此外,也有许多研究表明,丙酰辅酶A可经柠檬酸/2-氧代丁酸途径、天冬氨酸/2-氧代丁酸途径、新型3-羟基丙酸盐途径合成,这也为后续增强丙酰辅酶A合成的研究方向提供了理论依据[50]

3.1.2 推动三酰甘油合成和阻断脂肪酸降解

产油酵母具有强大的脂质合成和积累能力,一直以来是微生物发酵合成OCFA的首选底盘菌。以Y. lipolytica为例,Y. lipolytica体内可以产生大量脂质体以积累脂肪酸,其中脂肪酸的降解完全通过过氧化物酶体中的β-氧化进行[51]Y. lipolytica中的脂肪酸由乙酰辅酶A作为起始分子合成。在脂肪酸合酶的催化下,乙酰辅酶A和丙二酰辅酶A产生酰基辅酶A,并延长脂肪酸链的两个碳。酰基辅酶A也可由脂肪酰基辅酶A合成酶催化外界游离脂肪酸产生。酰基辅酶A经肯尼迪途径(Kennedy pathway)形成TAG。β-氧化途径由四个反应组成循环,每个循环截断脂肪酸链主干的两个碳,并释放一分子乙酰辅酶A:第一步反应由六个酰基辅酶A氧化酶POX催化,六个酶表现出不同链长脂肪酸的偏好;第二步和第三步反应由多功能酶MFE催化;第四步反应由硫代酶POT1催化。这几种酶的缺失均可在不同程度上阻断β-氧化途径[52]
OCFA的合成和代谢与常规脂肪酸相同,因此有研究尝试在产油酵母中结合推动TAG合成和阻断脂肪酸β-氧化途径来达到积累OCFA的目的。Park等[10]在工程Y. lipolytica的基础上,通过敲除多功能酶编码基因(MFE1)和三酰甘油脂肪酶编码基因(TGL4),过表达二酰基甘油酰基转移酶基因(DGA2)和甘油-3-磷酸脱氢酶基因(GPD1),将阻断β-氧化途径、抑制TAG的再活化和推动TAG合成相结合,使OCFA和总脂肪酸的积累量分别提升了3.35倍和3.78倍。这种调控策略常见于脂质产物的工程菌构建中,在OCFA相关研究中尚未广泛出现。例如,Ghogare等[53]Y. lipolytica中结合阻断脂肪酸的β-氧化途径、弱化脂肪酸活化能力和异源表达来源于细菌的硫酯酶三种策略,获取更高产量的脂肪酸。类似的思路也被用于在酿酒酵母中提升TAG的水平。通过过表达乙酰辅酶A羧化酶(ACC1)及TAG形成的最后两个步骤催化酶:磷脂磷酸酶(PAH1)和二酰基甘油酰基转移酶(DGA1),破坏TAG脂肪酶基因(TGL3TGL4TGL5)和固醇酰基转移酶基因(ARE1),在含2%葡萄糖的最低培养基中TAG水平达到了最大理论产量的27%,也是当时酿酒酵母中报道的最高滴度[54]。目前产油酵母中针通过改造TAG和β-氧化途径来调控OCFA合成的相关研究并不多,而这两个途径对脂肪酸的合成和降解均有直接的影响,因此或可深度挖掘相关基因对OCFA合成的影响。

3.1.3 模块化重构相关合成途径

关于脂肪酸合成代谢的研究一直受到广泛的关注,既涉及许多功能基因的改造,也包含一些新型基因编辑工具的应用[55]。因此,在OCFA合成领域,无论是潜在靶点基因或是研究理念,都有许多值得挖掘的地方。得益于合成生物学技术的发展,近些年有关OCFA的研究不只局限于单个基因的改造,模块化重构代谢途径也是有力的改造手段之一。通过组合天冬氨酸合成模块、高丝氨酸合成模块和拓展强化的苏氨酸合成模块,将草酰乙酸依次转化为天冬氨酸、高丝氨酸和苏氨酸。苏氨酸经苏氨酸脱水酶催化脱氨基生成α-酮丁酸,然后被丙酮酸脱氢酶复合物或丙酮酸氧化酶直接或间接转化为丙酰辅酶A,作为OCFA合成的前体物强化OCFA合成,工程菌株OCFA产量相比对照提升了7.2倍[11]。Tseng等[47]通过构建三个模块:前体供应、顶部通路和底部途径来整合九步反应,从苏氨酸合成起始积累前体物并在体内合成奇数链底物,扩大了从简单碳水化合物通过脂肪酸生物合成和β-氧化途径产生的酸和醇的底物池。使用旁路策略分析单个模块,既能验证复杂的多步途径的体内功能,又能完全识别组装途径中的潜在瓶颈。结合Lee等人[46]通过引入苏氨酸途径提升OCFA产量的研究,进一步拓展了模块化重构OCFA合成途径的可能性。

3.1.4 关键酶的表达调控

除了上述手段,许多关键酶的表达调控也能起到正向的结果。乙酰辅酶A羧化酶作为催化乙酰辅酶A和二氧化碳反应生成丙二酰辅酶A的关键酶,有相关研究显示强化乙酰辅酶A羧化酶的表达可以增强脂肪酸的合成[56]。脂肪酸延伸循环的第一步是由β-酮脂酰-ACP合酶催化,将乙酰辅酶A和丙二酰-ACP转化为乙酰乙酰-ACP,每个循环周期增加两个碳原子。不同来源的β-酮脂酰-ACP合酶的底物特异性也有所差异,如表现出对异戊基辅酶A、异丁基辅酶A和2-甲基丁基辅酶A的特异性[57]。有研究在大肠杆菌中评估了不同来源的β-酮脂酰-ACP合酶对丙酰辅酶A的特异性,发现来源于Bacillus subtilis的β-酮脂酰-ACP合酶协同来源于Salmonella enterica的丙酰辅酶A合酶在48 h生成了最多的奇数链游离脂肪酸[9]。Jin等[44]结合Cao等[43]的研究基础,在酿酒酵母中整合胞质硫酯酶、α双加氧酶(α-dioxygenase,αDOX)和天然乙醇脱氢酶(alcohol dehydrogenase,ADH)生物合成途径,在2%的葡萄糖培养基中,分别获得了19.8 mg/L和20.3 mg/L的奇数链脂肪醛和奇数链脂肪醇。通过强化内源关键酶的表达或异源表达特定功能的外源酶,对促进OCFA的合成也能达到理想效果。图4总结了以丙酰辅酶A为关键代谢中间物合成OCFA的不同底物转化路径。
图4 微生物合成OCFA代谢途径

Fig.4 Metabolic pathways for microbial synthesis of OCFA

Blue arrows indicate precursors for propionyl coenzyme A; Red arrows indicate the metabolic pathway for conversion of propionyl coenzyme A to OCFA; accABCD, encoding acetyl-CoA carboxylase; ADH, encoding alcohol dehydrogenase; ALDH, encoding aldehyde dehydrogenase; PduCDE, encoding adenosylcobalamin-dependent diol dehydratase; PduP, encoding propionaldehyde dehydrogenase; PCS, propionyl-CoA synthetase; fabA, encoding 3-hydroxydecanoyl-ACP dehydratase; fabB, encoding beta-ketoacyl-ACP synthase; fabD, encoding malonyl-CoA: ACP transacylase; fabF, encoding 3-oxoacyl-ACP synthase Ⅱ; fabG, encoding 3-oxoacyl-ACP reductase; fabH, encoding beta-ketoacyl-ACP synthase III; fabI, encoding enoyl-ACP reductase; αDOX, α-dioxygenases

Full size|PPT slide

3.2 发酵调控策略

利用基因工程的手段可以对工程菌株中的靶点基因直接进行敲除、过表达或替换等操作,同时由于OCFA的合成特点,某些物质的外源补加对OCFA的合成也有着良好的效果。葡萄糖、果糖、乙酸、丙酸、丁酸、乳酸和甘油等均被用来探究对OCFA合成的影响,但只有丙酸等C3类物质被证明能促进OCFA的合成。Zhang等[34]R. opacus PD630培养基中补加1-丙醇,使OCFA产量提升了46.7%~55.1%。Bhatia等[12]以丙酸为最佳碳源,采用响应面优化法设计的合成培养基中含有甘油、丙酸和氯化铵,Rhodococcus sp. YHY01可合成占总脂肪酸85%的OCFA。 R˙ezanka等[58]分别以丙酸或乳酸为唯一碳源培养七种酵母,而只有以丙酸为唯一碳源的酵母能产生大量的OCFA。在丙酸培养基上培养念珠酵母,其中C17:1的产率达到111 mg/L。丙酸是目前报道的促进OCFA合成最有效的碳源。丙酸被丙酰辅酶A合成酶转化为丙酰辅酶A,作为合成起始先导物刺激OCFA的大量合成。但高浓度丙酸表现出对细胞生长明显的抑制作用,如Park等[10]发现Y. lipolytica在10 g/L浓度的丙酸环境中生长状况受到较大影响,而Fontanille等[13]发现在5 g/L的浓度时菌株生长便被抑制。在这种情况下发酵调控策略是被优先考虑的策略,Park等[10]采用分批补料的策略,在16 h、23 h、40 h和47 h时分批补加葡萄糖和丙酸,Fontanille等[13]采取两阶段分批补料策略。这种类似的发酵调控方法,均在一定程度上减轻了丙酸对菌体生长的影响,达到了促进OCFA合成的目的。表2为工程策略促进微生物合成OCFA的研究进展。
表2 工程策略促进微生物合成OCFA研究进展

Table 2 Advances in engineering strategies promoting OCFA synthesis by microorganisms

生产菌株 OCFA组成 主要策略 含量 参考文献
Escherichia coli C11:0,C13:0 丙酸为碳源,并在大肠杆菌中耦合表达酰基-ACP硫酯酶、丙酰辅酶A合酶和β-酮酰-ACP合酶III 1 205 mg/L,占总脂肪酸的83.2% [9]
Escherichia coli C11:0,C13:0,C15:0 引入硫酯酶基因,过表达来源于S. enterica的丙酰辅酶A合酶,并外源补加丙酸 297 mg/L [41]
Escherichia coli C7-C13的mcl-PHA 引入丙酸同化和代谢途径至反向脂肪酸β-氧化,敲除丙酮酸氧化酶和丙酮酸甲酸裂解酶,异源表达来源于Ralstonia eutrophaprpPprpE基因 奇数链mcl-PHA约占总产量的20.03% [59]
Yarrowia lipolytica C15:0,C17:0,C17:1,C19:0 构建包含七个基因的模块化代谢途径从头合成奇数链脂肪酸 0.36 g/L [11]
Yarrowia lipolytica C15:0,C17:0,C17:1,C19:0 评估不同来源的丙酸激活酶和丙酰辅酶A转移酶,同时表达β-酮硫醇酶 1.87 g/L [49]

4 展望

OCFA具有独特的理化性质,在食品、医药健康、工业材料和生物燃料等领域有着巨大的应用潜力。OCFA在自然界中含量很低,传统的化学合成法和提取法由于高成本、低产率, 无法实现大规模的工业化生产。
微生物凭借独特的代谢机制,在合成OCFA方面具有先天优势。随着基因工程和代谢工程的发展,众多基因编辑工具的开发极大地拓展了改造微生物遗传特性的方法,对其内源代谢途径也有了更深刻的了解。借助各种基因编辑工具对微生物内源代谢途径进行理性设计和改造,结合微生物发酵周期短、不受场地限制等优点,并辅助发酵调控手段,能够突破微生物原有生产能力的限制,以低成本获得更高经济效益。
目前尚未有关于OCFA大规模工业化生产的报道,相关研究领域的问题仍局限于菌株生产能力差和转化率低、培养条件和发酵工艺待优化,相关代谢途径也有待挖掘。针对上述问题,今后的研究重点可集中在以下几个方面:(1)采用适应性进化或定向进化等手段,结合高通量筛选技术选育抗高浓度丙酸的生产菌株;(2)基于基因组学和代谢组学等多组学手段,分析OCFA合成代谢流路,挖掘潜在的代谢回路关键调控节点和胁迫基因,实现OCFA生产菌株代谢网络的局部优化或全局优化;(3)目前的相关研究局限在代谢调控和培养条件优化等方向,对于OCFA的发酵分离等缺少深入的研究,可在发酵过程中对产物及时分离以解除反馈抑制,进一步提升产率;(4)动态调控策略的深入研究使得工程细胞能够及时响应外界环境变化,对自身相关基因表达进行精确调控可在工程菌株中引入动态调控策略,实现代谢流和物质流的动态分布,提高生产效率。随着合成生物学领域的蓬勃发展和对微生物合成代谢途径的明晰,从头进行人工设计并构建新的生物合成途径已成为可能。目前运用合成生物学手段已在蛋白表达、基因调控和细胞互作方面取得了极大的研究进展。未来将通过合成生物学的调控手段,建立更高效的微生物细胞合成工厂,以期早日实现OCFA的工业化生产。

参考文献

[1]
Lamont M, Amezquita E M, Ganuza T E. Food additive useful in processed food product or food component, and treating gene metabolic disorders comprises microalgal anaplerotic oil rich in saturated tridecanoic, pentadecanoic, and heptadecanoic odd-chain fatty acids: US20210051988A1. 2021-02-25. [2021-11-20]. https://www.webofscience.com/wos/alldb/full-record/DIIDW:202119412Q.
[2]
Dornan K, Gunenc A, Oomah B D, et al. Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. Journal of the American Oil Chemists’ Society, 2021, 98(8): 813-824.
[3]
Liu H B, Yu H Y, Xia J, et al. Topical azelaic acid, salicylic acid, nicotinamide, sulphur, zinc and fruit acid (alpha-hydroxy acid) for acne. The Cochrane Database of Systematic Reviews, 2020, 5(5): CD011368.
[4]
Gillingham M B, Heitner S B, Martin J, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. Journal of Inherited Metabolic Disease, 2017, 40(6): 831-843.
Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs.A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis.Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups.C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs.Clinicaltrials.gov NCT01379625.
[5]
Imamura F, Sharp S J, Koulman A, et al. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Medicine, 2017, 14(10): e1002409.
[6]
Weitkunat K, Schumann S, Nickel D, et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. The American Journal of Clinical Nutrition, 2017, 105(6): 1544-1551.
[7]
黄霄霄. 从天然偶碳脂肪酸合成奇碳脂肪酸的研究. 无锡: 江南大学, 2013.
Huang X X. Synthesis of odd-numbered fatty acids from natural even-numbered fatty acids. Wuxi: Jiangnan University, 2013.
[8]
Zhang L S, Liang S, Zong M H, et al. Microbial synthesis of functional odd-chain fatty acids: a review. World Journal of Microbiology & Biotechnology, 2020, 36(3): 35.
[9]
Wu H, San K Y. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnology and Bioengineering, 2014, 111(11): 2209-2219.
[10]
Park Y K, Dulermo T, Ledesma-Amaro R, et al. Optimization of odd chain fatty acid production by Yarrowia lipolytica. Biotechnology for Biofuels, 2018, 11: 158.
[11]
Park Y K, Ledesma-Amaro R, Nicaud J M. De novo biosynthesis of odd-chain fatty acids in Yarrowia lipolytica enabled by modular pathway engineering. Frontiers in Bioengineering and Biotechnology, 2020, 7: 484.
[12]
Bhatia S K, Gurav R, Choi T R, et al. A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY 01 by medium engineering. Bioresource Technology, 2019, 286: 121383.
[13]
Fontanille P, Kumar V, Christophe G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 2012, 114: 443-449.
The valorization of volatile fatty acids into microbial lipids by the oleaginous yeast Yarrowia lipolytica was investigated. Therefore, a two-stage fed-batch strategy was designed: the yeast was initially grown on glucose or glycerol as carbon source, then sequential additions of acetic acid under nitrogen limiting conditions were performed after glucose or glycerol exhaustion. The typical values obtained with an initial 40 g/L concentration of glucose were close to 31 g/L biomass, a lipid concentration of 12.4 g/L, which correspond to a lipid content of the biomass close to 40%. This cultivation strategy was also efficient with other volatile fatty acids (butyric and propionic acids) or with a mixture of these three VFAs. The lipids composition was found quite similar to that of vegetable oils. The study demonstrated the feasibility of simultaneous biovalorization of volatile fatty acids and glycerol, two cheap industrial by-products.Copyright © 2012 Elsevier Ltd. All rights reserved.
[14]
Ledesma-Amaro R, Dulermo R, Niehus X, et al. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metabolic Engineering, 2016, 38: 38-46.
Microbial oils are sustainable alternatives to petroleum for the production of chemicals and fuels. Oleaginous yeasts are promising source of oils and Yarrowia lipolytica is the most studied and engineered one. Nonetheless the commercial production of biolipids is so far limited to high value products due to the elevated production and extraction costs. In order to contribute to overcoming these limitations we exploited the possibility of secreting lipids to the culture broth, uncoupling production and biomass formation and facilitating the extraction. We therefore considered two synthetic approaches, Strategy I where fatty acids are produced by enhancing the flux through neutral lipid formation, as typically occurs in eukaryotic systems and Strategy II where the bacterial system to produce free fatty acids is mimicked. The engineered strains, in a coupled fermentation and extraction process using alkanes, secreted the highest titer of lipids described so far, with a content of 120% of DCW.Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
[15]
Degwert J, Jacob J, Steckel F. Use of cis-9-heptadecenoic acid for treating psoriasis and allergies: EP, EP19940912534. 1993-03-24[2021-11-20]. https://europepmc.org/article/PAT/EP0690710.
[16]
Shirley M. Correction to: triheptanoin: first approval. Drugs, 2020, 80(17): 1873.
[17]
Avis T J, Boulanger R R, Bélanger R R. Synthesis and biological characterization of (Z)-9-heptadecenoic and (Z)-6-methyl-9-heptadecenoic acids: fatty acids with antibiotic activity produced by Pseudozyma flocculosa. Journal of Chemical Ecology, 2000, 26(4): 987-1000.
[18]
Weitkunat K, Bishop C A, Wittmüss M, et al. Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent. Nutrients, 2021, 13(5): 1546.
[19]
Toral P G, Hervás G, Badia A D, et al. Effect of dietary lipids and other nutrients on milk odd- and branched-chain fatty acid composition in dairy ewes. Journal of Dairy Science, 2020, 103(12): 11413-11423.
Milk odd- and branched-chain fatty acids (OBCFA) are largely derived from bacteria leaving the rumen, which has encouraged research on their use as biomarkers of rumen function. Targeted research has examined relationships between these fatty acids (FA) and dietary components, but interactions between the effects of lipids and other nutrients on milk OBCFA are not well characterized yet. Furthermore, factors controlling milk OBCFA in sheep are largely unknown. Thus, the present meta-analysis examined relationships between diet composition and milk OBCFA using a database compiled with lot observations from 14 trials in dairy ewes fed lipid supplements. A total of 47 lots received lipid supplements, whereas their respective controls (27 lots) were fed the same basal diets without lipid supplementation. Relationships between milk OBCFA and dietary components were first assessed through a principal component analysis (PCA) and a correlation analysis. Then, responses of milk OBCFA to variations in specific dietary components (selected on the basis of the PCA) were examined in more detail by regression analysis. According to the loading plot, dietary unsaturated C18 FA loaded opposite to major milk OBCFA (e.g., 15:0, 15:0 anteiso, and 17:0) and were strongly correlated with principal component 1, which described 46% of variability. Overall, regression equations supported this negative, and generally linear, relationship between unsaturated C18 FA levels and milk OBCFA. However, the influence of C20-22 n-3 polyunsaturated FA and saturated FA was more limited. The PCA also suggested that dietary crude protein is not a determinant of milk OBCFA profile in dairy ewes, but significant relationships were observed between some OBCFA and dietary fiber or starch, consistent with a potential role of these FA as biomarkers of rumen cellulolytic and amylolytic bacteria. In this regard, regression equations indicated that iso FA would show opposite responses to increasing levels of acid detergent fiber (positive linear coefficients) and starch (negative linear coefficients). Lipid supplementation would not largely affect these associations, supporting the potential of OBCFA as noninvasive markers of rumen function under different feeding conditions (i.e., with or without lipid supplementation). Because consumption of these FA may have nutritional benefits for humans, the use of high-fiber/low-starch rations might be recommended to maintain the highest possible content of milk OBCFA in dairy sheep.Copyright © 2020 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[20]
Aglago E K, Biessy C, Torres-Mejía G, et al. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. Journal of Lipid Research, 2017, 58(7): 1462-1470.
Fatty acids (FAs) have been postulated to impact adiposity, but few epidemiological studies addressing this hypothesis have been conducted. This study investigated the association between serum phospholipid FAs (S-PLFAs) and indicators of obesity. BMI and waist-to-hip ratio (WHR) were collected from 372 healthy Mexican women included as controls in a case-control study. S-PLFA percentages were determined through gas chromatography. Desaturation indices, SCD-16, SCD-18, FA desaturase (FADS)1, and FADS2, biomarkers of endogenous metabolism, were proxied respectively as 16:1n-7/16:0, 18:1n-9/18:0, 20:4n-6/20:3n-6, and 22:6n-3/20:5n-3. Multiple linear regressions adjusted for relevant confounders and corrected for multiple testing were conducted to determine the association between S-PLFA, desaturation indices, and indicators of adiposity. SCD-16 (β = 0.034, = 0.001, q = 0.014), palmitoleic acid (β = 0.031, = 0.001, q = 0.014), and dihomo-γ-linolenic acid (β = 0.043, = 0.000, q = 0.0002) were positively associated with BMI. Total n-6 PUFAs (β = 1.497, = 0.047, q = 0.22) and the ratio of n-6/n-3 PUFAs (β = 0.034, = 0.040, q = 0.19) were positively associated with WHR, while odd-chain FAs (pentadecanoic and heptadecanoic acid) showed negative associations with all the adiposity indicators. In conclusion, increased endogenous synthesis of palmitoleic acid and a high n-6/n-3 ratio are associated with increased adiposity, while odd-chain FAs are associated with decreased adiposity. Further studies are needed to determine the potential causality behind these associations.Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
[21]
Park Y K, Nicaud J M. Metabolic engineering for unusual lipid production in Yarrowia lipolytica. Microorganisms, 2020, 8(12): 1937.
[22]
沙莎, 郑玉斌. 利用奇数碳二元酸制备透明聚酰胺的研究. 塑料科技, 2016, 44(8): 37-41.
Sha S, Zheng Y B. Study on transparent polyamide with odd carbon dicarboxylic acid. Plastics Science and Technology, 2016, 44(8): 37-41.
[23]
Blaskovich M A T, Elliott A G, Kavanagh A M, et al. In vitro antimicrobial activity of acne drugs against skin-associated bacteria. Scientific Reports, 2019, 9(1): 14658.
Acne is a common skin affliction that involves excess sebum production and modified lipid composition, duct blockage, colonization by bacteria, and inflammation. Acne drugs target one or more of these steps, with antibiotics commonly used to treat the microbial infection for moderate to severe cases. Whilst a number of other acne therapies are purported to possess antimicrobial activity, this has been poorly documented in many cases. We conducted a comparative analysis of the activity of common topical acne drugs against the principal etiological agent associated with acne: the aerotolerant anaerobic Gram-positive organism Propionibacterium acnes (recently renamed as Cutibacterium acnes). We also assessed their impact on other bacteria that could also be affected by topical treatments, including both antibiotic-sensitive and antibiotic-resistant strains, using broth microdilution assay conditions. Drugs designated specifically as antibiotics had the greatest potency, but lost activity against resistant strains. The non-antibiotic acne agents did possess widespread antimicrobial activity, including against resistant strains, but at substantially higher concentrations. Hence, the antimicrobial activity of non-antibiotic acne agents may provide protection against a background of increased drug-resistant bacteria.
[24]
Searle T, Ali F R, Al-Niaimi F. The versatility of azelaic acid in dermatology. The Journal of Dermatological Treatment, 2022, 33(2): 722-732.
[25]
Vockley J, Charrow J, Ganesh J, et al. Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Molecular Genetics and Metabolism, 2016, 119(3): 223-231.
Long-chain fatty acid oxidation disorders (LC-FAOD) can cause cardiac hypertrophy and cardiomyopathy, often presenting in infancy, typically leading to death or heart transplant despite ongoing treatment. Previous data on triheptanoin treatment of cardiomyopathy in LC-FAOD suggested a clinical benefit on heart function during acute failure. An additional series of LC-FAOD patients with critical emergencies associated with cardiomyopathy was treated with triheptanoin under emergency treatment or compassionate use protocols. Case reports from 10 patients (8 infants) with moderate or severe cardiomyopathy associated with LC-FAOD are summarized. The majority of these patients were detected by newborn screening, with follow up confirmatory testing, including mutation analysis; all patients were managed with standard treatment, including medium chain triglyceride (MCT) oil. While on this regimen, they presented with acute heart failure requiring hospitalization and cardiac support (ventilation, ECMO, vasopressors) and, in some cases, resuscitation. The patients discontinued MCT oil and began treatment with triheptanoin, an investigational drug. Triheptanoin is expected to provide anaplerotic metabolites, to replace deficient TCA cycle intermediates and improve effective energy metabolism. Cardiac function was measured by echocardiography and ejection fraction (EF) was assessed. EF was moderately to severely impaired prior to triheptanoin treatment, ranging from 12-45%. Improvements in EF began between 2 and 21days following initiation of triheptanoin, and peaked at 33-71%, with 9 of 10 patients achieving EF in the normal range. Continued treatment was associated with longer-term stabilization of clinical signs of cardiomyopathy. The most common adverse event observed was gastrointestinal distress. Of the 10 patients, 7 have continued on treatment, 1 elected to discontinue due to tolerability issues, and 2 patients died from other causes. Two of the case histories illustrate that cardiomyopathy may also develop later in childhood and/or persist into adulthood. Overall, the presented cases suggest a therapeutic effect of triheptanoin in the management of acute cardiomyopathy associated with LC-FAOD.Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
[26]
Prada M, Wittenbecher C, Eichelmann F, et al. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: a targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clinical Nutrition, 2021, 40(8): 4988-4999.
[27]
Jenkins B, Aoun M, Feillet-Coudray C, et al. The dietary total-fat content affects the in vivo circulating C15: 0 and C17: 0 fatty acid levels independently. Nutrients, 2018, 10(11): 1646.
[28]
Poppitt S D. Cow’s milk and dairy consumption: is there now consensus for cardiometabolic health. Frontiers in Nutrition, 2020, 7: 574725.
[29]
To N B, Nguyen Y T K, Moon J Y, et al. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients, 2020, 12(6): 1663.
[30]
Venn-Watson S, Lumpkin R, Dennis E A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential. Scientific Reports, 2020, 10: 8161.
Dietary odd-chain saturated fatty acids (OCFAs) are present in trace levels in dairy fat and some fish and plants. Higher circulating concentrations of OCFAs, pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0), are associated with lower risks of cardiometabolic diseases, and higher dietary intake of OCFAs is associated with lower mortality. Population-wide circulating OCFA levels, however, have been declining over recent years. Here, we show C15:0 as an active dietary fatty acid that attenuates inflammation, anemia, dyslipidemia, and fibrosis in vivo, potentially by binding to key metabolic regulators and repairing mitochondrial function. This is the first demonstration of C15:0's direct role in attenuating multiple comorbidities using relevant physiological mechanisms at established circulating concentrations. Pairing our findings with evidence that (1) C15:0 is not readily made endogenously, (2) lower C15:0 dietary intake and blood concentrations are associated with higher mortality and a poorer physiological state, and (3) C15:0 has demonstrated activities and efficacy that parallel associated health benefits in humans, we propose C15:0 as a potential essential fatty acid. Further studies are needed to evaluate the potential impact of decades of reduced intake of OCFA-containing foods as contributors to C15:0 deficiencies and susceptibilities to chronic disease.
[31]
Ediriweera M K, To N B, Lim Y, et al. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie, 2021, 186: 147-156.
[32]
Dowd M K, Farve M C. Fatty acid composition of Tilia spp. seed oils. Grasas Y Aceites, 2013, 64(3): 243-249.
[33]
Wen J, Hu C Q, Fan S G. Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 2010, 90(14): 2469-2474.
[34]
Zhang L S, Xu P, Chu M Y, et al. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630. World Journal of Microbiology & Biotechnology, 2019, 35(11): 164.
[35]
Buitenhuis B, Lassen J, Noel S J, et al. Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle. Genetics, Selection, Evolution: GSE, 2019, 51(1): 23.
Fatty acids (FA) in bovine milk derive through body mobilization, de novo synthesis or from the feed via the blood stream. To be able to digest feedstuff, the cow depends on its rumen microbiome. The relative abundance of the microbes has been shown to differ between cows. To date, there is little information on the impact of the microbiome on the formation of specific milk FA. Therefore, in this study, our aim was to investigate the impact of the rumen bacterial microbiome on milk FA composition. Furthermore, we evaluated the predictive value of the rumen microbiome and the host genetics on the composition of individual FA in milk.Our results show that the proportion of variance explained by the rumen bacteria composition (termed microbiability or [Formula: see text]) was generally smaller than that of the genetic component (heritability), and that rumen bacteria influenced most C15:0, C17:0, C18:2 n-6, C18:3 n-3 and CLA cis-9, trans-11 with estimated [Formula: see text] ranging from 0.26 to 0.42. For C6:0, C8:0, C10:0, C12:0, C16:0, C16:1 cis-9 and C18:1 cis-9, the variance explained by the rumen bacteria component was close to 0. In general, both the rumen microbiome and the host genetics had little value for predicting FA phenotype. Compared to genetic information only, adding rumen bacteria information resulted in a significant improvement of the predictive value for C15:0 from 0.22 to 0.38 (P = 9.50e-07) and C18:3 n-3 from 0 to 0.29 (P = 8.81e-18).The rumen microbiome has a pronounced influence on the content of odd chain FA and polyunsaturated C18 FA, and to a lesser extent, on the content of the short- and medium-chain FA in the milk of Holstein cattle. The accuracy of prediction of FA phenotypes in milk based on information from either the animal's genotypes or rumen bacteria composition was very low.
[36]
Kolouchová I, Schreiberová O, Sigler K, et al. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. FEMS Yeast Research, 2015, 15(7): fov076.
[37]
Wang F Z, Bi Y L, Diao J J, et al. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31. Biotechnology for Biofuels, 2019, 12: 141.
[38]
Price N P J, Jackson M A, Hartman T M, et al. Branched chain lipid metabolism as a determinant of the N-acyl variation of Streptomyces natural products. ACS Chemical Biology, 2021, 16(1): 116-124.
Branched-chain fatty acids (BCFA) are encountered in Gram-positive bacteria, but less so in other organisms. The bacterial BCFA in membranes are typically saturated, with both odd- and even-numbered carbon chain lengths, and with methyl branches at either the ω-1 () or ω-2 () positions. The acylation with BCFA also contributes to the structural diversity of microbial natural products and potentially modulates biological activity. For the tunicamycin (TUN) family of natural products, the toxicity toward eukaryotes is highly dependent upon -acylation with -2,3-unsaturated BCFA. The loss of the 2,3-unsaturation gives modified TUN with reduced eukaryotic toxicity but crucially with retention of the synergistic enhancement of the β-lactam group of antibiotics. Here, we infer from genomics, mass spectrometry, and deuterium labeling that the -2,3-unsaturated TUN variants and the saturated cellular lipids found in TUN-producing are derived from the same pool of BCFA metabolites. Moreover, non-natural primers of BCFA metabolism are selectively incorporated into the cellular lipids of TUN-producing and concomitantly produce structurally novel -branched TUN -acyl variants.
[39]
Adli M. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9(1): 1911.
[40]
Shi T Q, Huang H, Kerkhoven E J, et al. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548.
[41]
Wu H, San K Y. Engineering Escherichia coli for odd straight medium chain free fatty acid production. Applied Microbiology and Biotechnology, 2014, 98(19): 8145-8154.
[42]
Maurer S, Schewe H, Schrader J, et al. Investigation of fatty aldehyde and alcohol synthesis from fatty acids by αDox- or CAR-expressing Escherichia coli. Journal of Biotechnology, 2019, 305: 11-17.
[43]
Cao Y X, Xiao W H, Liu D, et al. Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metabolic Engineering, 2015, 29: 113-123.
[44]
Jin Z, Wong A, Foo J L, et al. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnology and Bioengineering, 2016, 113(4): 842-851.
[45]
Liu H, Marsafari M, Wang F, et al. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metabolic Engineering, 2019, 56: 60-68.
[46]
Lee G J, Haliburton J R, Hu Z H, et al. Production of odd chain fatty acid derivatives in recombinant microbial cells: US, US20210324431A1. 2021-10-21[2021-11-20]. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20210324431.PGNR.
[47]
Tseng H C, Prather K L J. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 17925-17930.
[48]
Ingram L O, Chevalier L S, Gabba E J, et al. Propionate-induced synthesis of odd-chain-length fatty acids by Escherichia coli. Journal of Bacteriology, 1977, 131(3): 1023-1025.
Exogenous propionate is incorporated in vivo by Escherichia coli as a primer to produce lipids with fatty acids of odd chain lengths. This provides a method for the specific labeling of the three terminal carbons in the fatty acyl chains of phospholipids.
[49]
Park Y K, Bordes F, Letisse F, et al. Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica. Metabolic Engineering Communications, 2021, 12: e00158.
[50]
Han J, Hou J, Zhang F, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Applied and Environmental Microbiology, 2013, 79(9): 2922-2931.
[51]
Imatoukene N, Verbeke J, Beopoulos A, et al. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2017, 101(11): 4605-4616.
Conjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated. These mutants presented various genetic modifications, including the elimination of β-oxidation (pox1-6∆), the inability to store lipids as triglycerides (dga1∆ dga2∆ are1∆ lro1∆), and the overexpression of the Y. lipolytica ∆12-desaturase gene (YlFAD2) under the control of the constitutive pTEF promoter. All strains received two copies of the pTEF-oPAI or pPOX-oPAI expression cassettes; PAI encodes linoleic acid isomerase in Propionibacterium acnes. The strains were cultured in neosynthesis or bioconversion medium in flasks or a bioreactor. The strain combining the three modifications mentioned above showed the best results: when it was grown in neosynthesis medium in a flask, CLAs represented 6.5% of total fatty acids and in bioconversion medium in a bioreactor, and CLA content reached 302 mg/L. In a previous study, a CLA degradation rate of 117 mg/L/h was observed in bioconversion medium. Here, by eliminating β-oxidation, we achieved a much lower rate of 1.8 mg/L/h.
[52]
Ledesma-Amaro R, Nicaud J M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 2016, 61: 40-50.
One of the most promising alternatives to petroleum for the production of fuels and chemicals is bio-oil based chemistry. Microbial oils are gaining importance because they can be engineered to accumulate lipids enriched in desired fatty acids. These specific lipids are closer to the commercialized product, therefore reducing pollutants and costly chemical steps. Yarrowia lipolytica is the most widely studied and engineered oleaginous yeast. Different molecular and bioinformatics tools permit systems metabolic engineering strategies in this yeast, which can produce usual and unusual fatty acids. Usual fatty acids, those usually found in triacylglycerol, accumulate through the action of several pathways, such as fatty acid/triacylglycerol synthesis, transport and degradation. Unusual fatty acids are enzymatic modifications of usual fatty acids to produce compounds that are not naturally synthetized in the host. Recently, the metabolic engineering of microorganisms has produced different unusual fatty acids, such as building block ricinoleic acid and nutraceuticals such as conjugated linoleic acid or polyunsaturated fatty acids. Additionally, microbial sources are preferred hosts for the production of fatty acid-derived compounds such as γ-decalactone, hexanal and dicarboxylic acids. The variety of lipids produced by oleaginous microorganisms is expected to rise in the coming years to cope with the increasing demand.Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
[53]
Ghogare R, Chen S L, Xiong X C. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for overproduction of fatty acids. Frontiers in Microbiology, 2020, 11: 1717.
[54]
Ferreira R, Teixeira P G, Gossing M, et al. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 2018, 6: 22-27.
Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although is the favored microbial cell factory for industrial production of biochemicals, it does not produce large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy by overexpressing genes encoding a deregulated acetyl-CoA carboxylase,, as well as the last two steps of TAG formation: phosphatidic phosphatase () and diacylglycerol acyltransferase (), ultimately leading to 129 mg∙gCDW of TAGs. Disruption of TAG lipase genes,, and sterol acyltransferase gene increased the TAG content to 218 mg∙gCDW. Further disruption of the beta-oxidation by deletion of, as well as glycerol-3-phosphate utilization through deletion of, did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter led to accumulation of 254 mg∙gCDW. The TAG levels achieved here are the highest titer reported in, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species for high level lipid production.
[55]
Fang L, Fan J, Luo S, et al. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nature Communications, 2021, 12(1): 4976.
[56]
Xu P, Gu Q, Wang W, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications, 2013, 4: 1409.
[57]
Howard T P, Middelhaufe S, Moore K, et al. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7636-7641.
[58]
Řezanka T, Kolouchová I, Sigler K, Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts. Folia Microbiologica, 2013, 110(19): 7636-7641.
[59]
Zhuang Q Q, Qi Q S. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Microbial Cell Factories, 2019, 18(1): 135.

基金

*国家重点研发计划(2018YFA0902200)
国家自然科学基金(21878224)

PDF(4214 KB)

2824

Accesses

0

Citation

Detail

段落导航
相关文章

/