Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 76-85    DOI: 10.13523/j.cb.2201051
综述     
微生物合成奇数链脂肪酸研究进展*
白松,侯正杰,高庚荣,乔斌,程景胜()
天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300372
Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms
BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng()
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300372, China
 全文: PDF(4214 KB)   HTML
摘要:

奇数链脂肪酸(odd-chain fatty acids,OCFA)在自然界分布广泛但含量低,在食品、医药健康和工业等领域有着巨大的应用潜力。目前获取OCFA的方法主要为提取法和化学合成法,但成本高、效率低,而通过微生物发酵有望实现OCFA大规模工业生产。总结OCFA的应用范围和天然合成OCFA的微生物种类,详述微生物合成OCFA的代谢途径,并从基因工程策略和发酵调控策略两方面综述目前提升OCFA产量的研究现状,旨在为利用合成生物学策略改造和提升微生物合成OCFA的能力提供较为系统的理论依据。

关键词: 奇数链脂肪酸微生物发酵合成生物学代谢途径    
Abstract:

Odd-chain fatty acids (OCFAs) are widely distributed in nature, while their level is low. OCFA has huge application potential in the fields of medicine, health, and industry. The current methods of obtaining OCFA are mainly included in the extraction and chemical synthesis, which limits its application due to the higher-cost and the lower-efficiency. Microbial fermentation is one of the most promising strategies for large-scale industrial production. This article briefly discusses the scope of application of OCFA, summarizes the microorganisms that can naturally synthesize OCFA, introduces in detail the related metabolic pathways involved in microbial synthesis of OCFA, and reviews the current strategies of genetic engineering and fermentation regulation for improving OCFA production. Taken together, this summary aims to provide a more systematic and comprehensive theoretical basis for improving OCFA production of microorganism by synthetic biology strategies.

Key words: Odd-chain fatty acid(OCFA)    Microorganism fermentation    Synthetic biology    Metabolic pathways
收稿日期: 2022-01-27 出版日期: 2022-07-07
ZTFLH:  Q939  
基金资助: *国家重点研发计划(2018YFA0902200);国家自然科学基金(21878224)
通讯作者: 程景胜     E-mail: jscheng@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白松
侯正杰
高庚荣
乔斌
程景胜

引用本文:

白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.

BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms. China Biotechnology, 2022, 42(6): 76-85.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2201051        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/76

OCFA的种类 用途 作用机理 参考文献
十三烷二酸(tridecanedioic acid) 用于合成透明聚酰胺 与4,4'-二氨基二环己基甲烷(4,4'-diaminodicyclohexyl methane,PACM)成盐进行反应 [22]
壬二酸(azelaic acid) 治疗黄褐斑、痤疮病、恶性色素病 竞争性酪氨酸酶抑制剂 [23-24]
(9Z)-9-十七碳烯酸[(9Z)-9-heptadecenoic acid] 治疗牛皮癣、过敏、自身免疫疾病 阻止或减少TNF-α等介质的释放,抑制淋巴细胞活化,刺激巨噬细胞,使炎症过程正常化 [15]
庚烷酸(heptanoate) 抗惊厥、治疗癫痫病;长链脂肪酸氧化紊乱 代谢成C5酮、β-酮戊酸盐或β-羟基戊酸盐,通过一元羧酸转运体进入大脑;提供血管间质代谢物,取代缺乏的三羧酸循环中间体;提高有效的能量代谢,显著改善心脏结构和功能 [4,25]
十五烷酸(pentadecanoic acid);十七烷酸(heptadecanoic acid) 与心血管疾病、肥胖症、Ⅱ型糖尿病的发病呈负相关 OCFA能够降低患Ⅱ型糖尿病的风险;血浆磷脂中的C15:0和C17:0浓度与心血管疾病和肥胖指标呈负相关 [25-26]
十五烷酸(pentadecanoic acid) 评估乳脂摄入的标记物 OCFA来源于瘤胃微生物发酵或微生物从头合成,然后转入宿主动物,表现为胆固醇、磷脂、血清和脂肪组织中的C15:0的相对含量与乳脂摄入呈正相关 [27-28]
十五烷酸(pentadecanoic acid) 对人乳腺癌MCF-7/SC细胞具有选择性的细胞毒性作用 抑制IL-6诱导的JAK2/STAT3信号通路,诱导细胞周期阻滞在sub-G1期,并促进MCF-7/SC中半胱天冬酶依赖性细胞凋亡 [29]
十五烷酸(pentadecanoic acid) 减轻炎症、贫血、血脂异常和体内纤维化 可能是通过与关键代谢调节剂结合和修复线粒体功能 [30]
十一烷酸(undecanoic acid);十五烷酸(pentadecanoic acid) 抑制癌细胞增殖 对组蛋白去乙酰化酶具有抑制作用,能够剂量依赖性地促进MCF-7乳腺癌和A549肺癌细胞中α-微管蛋白的乙酰化 [31]
表1  OCFA应用概括
图1  常见奇数链脂肪酸和偶数链脂肪酸的化学结构
图2  Y. lipolytica中脂肪酸内源合成及代谢途径
图3  脂肪酸合成起始路径
图4  微生物合成OCFA代谢途径
生产菌株 OCFA组成 主要策略 含量 参考文献
Escherichia coli C11:0,C13:0 丙酸为碳源,并在大肠杆菌中耦合表达酰基-ACP硫酯酶、丙酰辅酶A合酶和β-酮酰-ACP合酶III 1 205 mg/L,占总脂肪酸的83.2% [9]
Escherichia coli C11:0,C13:0,C15:0 引入硫酯酶基因,过表达来源于S. enterica的丙酰辅酶A合酶,并外源补加丙酸 297 mg/L [41]
Escherichia coli C7-C13的mcl-PHA 引入丙酸同化和代谢途径至反向脂肪酸β-氧化,敲除丙酮酸氧化酶和丙酮酸甲酸裂解酶,异源表达来源于Ralstonia eutrophaprpPprpE基因 奇数链mcl-PHA约占总产量的20.03% [59]
Yarrowia lipolytica C15:0,C17:0,C17:1,C19:0 构建包含七个基因的模块化代谢途径从头合成奇数链脂肪酸 0.36 g/L [11]
Yarrowia lipolytica C15:0,C17:0,C17:1,C19:0 评估不同来源的丙酸激活酶和丙酰辅酶A转移酶,同时表达β-酮硫醇酶 1.87 g/L [49]
表2  工程策略促进微生物合成OCFA研究进展
[1] Lamont M, Amezquita E M, Ganuza T E. Food additive useful in processed food product or food component, and treating gene metabolic disorders comprises microalgal anaplerotic oil rich in saturated tridecanoic, pentadecanoic, and heptadecanoic odd-chain fatty acids: US20210051988A1. 2021-02-25. [2021-11-20]. https://www.webofscience.com/wos/alldb/full-record/DIIDW:202119412Q.
[2] Dornan K, Gunenc A, Oomah B D, et al. Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. Journal of the American Oil Chemists’ Society, 2021, 98(8): 813-824.
doi: 10.1002/aocs.12507
[3] Liu H B, Yu H Y, Xia J, et al. Topical azelaic acid, salicylic acid, nicotinamide, sulphur, zinc and fruit acid (alpha-hydroxy acid) for acne. The Cochrane Database of Systematic Reviews, 2020, 5(5): CD011368.
[4] Gillingham M B, Heitner S B, Martin J, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. Journal of Inherited Metabolic Disease, 2017, 40(6): 831-843.
doi: 10.1007/s10545-017-0085-8 pmid: 28871440
[5] Imamura F, Sharp S J, Koulman A, et al. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Medicine, 2017, 14(10): e1002409.
doi: 10.1371/journal.pmed.1002409
[6] Weitkunat K, Schumann S, Nickel D, et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. The American Journal of Clinical Nutrition, 2017, 105(6): 1544-1551.
[7] 黄霄霄. 从天然偶碳脂肪酸合成奇碳脂肪酸的研究. 无锡: 江南大学, 2013.
Huang X X. Synthesis of odd-numbered fatty acids from natural even-numbered fatty acids. Wuxi: Jiangnan University, 2013.
[8] Zhang L S, Liang S, Zong M H, et al. Microbial synthesis of functional odd-chain fatty acids: a review. World Journal of Microbiology & Biotechnology, 2020, 36(3): 35.
doi: 10.1007/s11274-020-02814-5
[9] Wu H, San K Y. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnology and Bioengineering, 2014, 111(11): 2209-2219.
doi: 10.1002/bit.25296
[10] Park Y K, Dulermo T, Ledesma-Amaro R, et al. Optimization of odd chain fatty acid production by Yarrowia lipolytica. Biotechnology for Biofuels, 2018, 11: 158.
doi: 10.1186/s13068-018-1154-4
[11] Park Y K, Ledesma-Amaro R, Nicaud J M. De novo biosynthesis of odd-chain fatty acids in Yarrowia lipolytica enabled by modular pathway engineering. Frontiers in Bioengineering and Biotechnology, 2020, 7: 484.
doi: 10.3389/fbioe.2019.00484
[12] Bhatia S K, Gurav R, Choi T R, et al. A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY 01 by medium engineering. Bioresource Technology, 2019, 286: 121383.
doi: 10.1016/j.biortech.2019.121383
[13] Fontanille P, Kumar V, Christophe G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 2012, 114: 443-449.
doi: 10.1016/j.biortech.2012.02.091 pmid: 22464419
[14] Ledesma-Amaro R, Dulermo R, Niehus X, et al. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metabolic Engineering, 2016, 38: 38-46.
doi: S1096-7176(16)30048-9 pmid: 27301328
[15] Degwert J, Jacob J, Steckel F. Use of cis-9-heptadecenoic acid for treating psoriasis and allergies: EP, EP19940912534. 1993-03-24[2021-11-20]. https://europepmc.org/article/PAT/EP0690710.
[16] Shirley M. Correction to: triheptanoin: first approval. Drugs, 2020, 80(17): 1873.
doi: 10.1007/s40265-020-01426-5
[17] Avis T J, Boulanger R R, Bélanger R R. Synthesis and biological characterization of (Z)-9-heptadecenoic and (Z)-6-methyl-9-heptadecenoic acids: fatty acids with antibiotic activity produced by Pseudozyma flocculosa. Journal of Chemical Ecology, 2000, 26(4): 987-1000.
doi: 10.1023/A:1005464326573
[18] Weitkunat K, Bishop C A, Wittmüss M, et al. Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent. Nutrients, 2021, 13(5): 1546.
doi: 10.3390/nu13051546
[19] Toral P G, Hervás G, Badia A D, et al. Effect of dietary lipids and other nutrients on milk odd- and branched-chain fatty acid composition in dairy ewes. Journal of Dairy Science, 2020, 103(12): 11413-11423.
doi: 10.3168/jds.2020-18580 pmid: 33069404
[20] Aglago E K, Biessy C, Torres-Mejía G, et al. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. Journal of Lipid Research, 2017, 58(7): 1462-1470.
doi: 10.1194/jlr.P073643 pmid: 28465289
[21] Park Y K, Nicaud J M. Metabolic engineering for unusual lipid production in Yarrowia lipolytica. Microorganisms, 2020, 8(12): 1937.
doi: 10.3390/microorganisms8121937
[22] 沙莎, 郑玉斌. 利用奇数碳二元酸制备透明聚酰胺的研究. 塑料科技, 2016, 44(8): 37-41.
Sha S, Zheng Y B. Study on transparent polyamide with odd carbon dicarboxylic acid. Plastics Science and Technology, 2016, 44(8): 37-41.
[23] Blaskovich M A T, Elliott A G, Kavanagh A M, et al. In vitro antimicrobial activity of acne drugs against skin-associated bacteria. Scientific Reports, 2019, 9(1): 14658.
doi: 10.1038/s41598-019-50746-4 pmid: 31601845
[24] Searle T, Ali F R, Al-Niaimi F. The versatility of azelaic acid in dermatology. The Journal of Dermatological Treatment, 2022, 33(2): 722-732.
doi: 10.1080/09546634.2020.1800579
[25] Vockley J, Charrow J, Ganesh J, et al. Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Molecular Genetics and Metabolism, 2016, 119(3): 223-231.
doi: S1096-7192(16)30205-0 pmid: 27590926
[26] Prada M, Wittenbecher C, Eichelmann F, et al. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: a targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clinical Nutrition, 2021, 40(8): 4988-4999.
doi: 10.1016/j.clnu.2021.06.006
[27] Jenkins B, Aoun M, Feillet-Coudray C, et al. The dietary total-fat content affects the in vivo circulating C15: 0 and C17: 0 fatty acid levels independently. Nutrients, 2018, 10(11): 1646.
doi: 10.3390/nu10111646
[28] Poppitt S D. Cow’s milk and dairy consumption: is there now consensus for cardiometabolic health. Frontiers in Nutrition, 2020, 7: 574725.
doi: 10.3389/fnut.2020.574725
[29] To N B, Nguyen Y T K, Moon J Y, et al. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients, 2020, 12(6): 1663.
doi: 10.3390/nu12061663
[30] Venn-Watson S, Lumpkin R, Dennis E A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential. Scientific Reports, 2020, 10: 8161.
doi: 10.1038/s41598-020-64960-y pmid: 32424181
[31] Ediriweera M K, To N B, Lim Y, et al. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie, 2021, 186: 147-156.
[32] Dowd M K, Farve M C. Fatty acid composition of Tilia spp. seed oils. Grasas Y Aceites, 2013, 64(3): 243-249.
doi: 10.3989/gya.096012
[33] Wen J, Hu C Q, Fan S G. Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 2010, 90(14): 2469-2474.
doi: 10.1002/jsfa.4108
[34] Zhang L S, Xu P, Chu M Y, et al. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630. World Journal of Microbiology & Biotechnology, 2019, 35(11): 164.
doi: 10.1007/s11274-019-2748-0
[35] Buitenhuis B, Lassen J, Noel S J, et al. Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle. Genetics, Selection, Evolution: GSE, 2019, 51(1): 23.
doi: 10.1186/s12711-019-0464-8 pmid: 31142263
[36] Kolouchová I, Schreiberová O, Sigler K, et al. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. FEMS Yeast Research, 2015, 15(7): fov076.
[37] Wang F Z, Bi Y L, Diao J J, et al. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31. Biotechnology for Biofuels, 2019, 12: 141.
doi: 10.1186/s13068-019-1484-x
[38] Price N P J, Jackson M A, Hartman T M, et al. Branched chain lipid metabolism as a determinant of the N-acyl variation of Streptomyces natural products. ACS Chemical Biology, 2021, 16(1): 116-124.
doi: 10.1021/acschembio.0c00799 pmid: 33411499
[39] Adli M. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9(1): 1911.
doi: 10.1038/s41467-018-04252-2
[40] Shi T Q, Huang H, Kerkhoven E J, et al. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548.
doi: 10.1007/s00253-018-9366-x
[41] Wu H, San K Y. Engineering Escherichia coli for odd straight medium chain free fatty acid production. Applied Microbiology and Biotechnology, 2014, 98(19): 8145-8154.
doi: 10.1007/s00253-014-5882-5
[42] Maurer S, Schewe H, Schrader J, et al. Investigation of fatty aldehyde and alcohol synthesis from fatty acids by αDox- or CAR-expressing Escherichia coli. Journal of Biotechnology, 2019, 305: 11-17.
doi: 10.1016/j.jbiotec.2019.08.011
[43] Cao Y X, Xiao W H, Liu D, et al. Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metabolic Engineering, 2015, 29: 113-123.
doi: 10.1016/j.ymben.2015.03.005
[44] Jin Z, Wong A, Foo J L, et al. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnology and Bioengineering, 2016, 113(4): 842-851.
doi: 10.1002/bit.25856
[45] Liu H, Marsafari M, Wang F, et al. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metabolic Engineering, 2019, 56: 60-68.
doi: 10.1016/j.ymben.2019.08.017
[46] Lee G J, Haliburton J R, Hu Z H, et al. Production of odd chain fatty acid derivatives in recombinant microbial cells: US, US20210324431A1. 2021-10-21[2021-11-20]. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20210324431.PGNR.
[47] Tseng H C, Prather K L J. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 17925-17930.
[48] Ingram L O, Chevalier L S, Gabba E J, et al. Propionate-induced synthesis of odd-chain-length fatty acids by Escherichia coli. Journal of Bacteriology, 1977, 131(3): 1023-1025.
doi: 10.1128/jb.131.3.1023-1025.1977 pmid: 330493
[49] Park Y K, Bordes F, Letisse F, et al. Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica. Metabolic Engineering Communications, 2021, 12: e00158.
doi: 10.1016/j.mec.2020.e00158
[50] Han J, Hou J, Zhang F, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Applied and Environmental Microbiology, 2013, 79(9): 2922-2931.
doi: 10.1128/AEM.03915-12
[51] Imatoukene N, Verbeke J, Beopoulos A, et al. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2017, 101(11): 4605-4616.
doi: 10.1007/s00253-017-8240-6 pmid: 28357546
[52] Ledesma-Amaro R, Nicaud J M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 2016, 61: 40-50.
doi: 10.1016/j.plipres.2015.12.001 pmid: 26703186
[53] Ghogare R, Chen S L, Xiong X C. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for overproduction of fatty acids. Frontiers in Microbiology, 2020, 11: 1717.
doi: 10.3389/fmicb.2020.01717
[54] Ferreira R, Teixeira P G, Gossing M, et al. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 2018, 6: 22-27.
doi: 10.1016/j.meteno.2018.01.002 pmid: 29896445
[55] Fang L, Fan J, Luo S, et al. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nature Communications, 2021, 12(1): 4976.
doi: 10.1038/s41467-021-25243-w
[56] Xu P, Gu Q, Wang W, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications, 2013, 4: 1409.
doi: 10.1038/ncomms2425
[57] Howard T P, Middelhaufe S, Moore K, et al. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7636-7641.
[58] Řezanka T, Kolouchová I, Sigler K, Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts. Folia Microbiologica, 2013, 110(19): 7636-7641.
[59] Zhuang Q Q, Qi Q S. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Microbial Cell Factories, 2019, 18(1): 135.
doi: 10.1186/s12934-019-1186-x
[1] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[2] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[3] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[4] 傅云扉,魏琦麟,袁明贵,康桦华,田雅,向蓉,徐志宏. 丁酸梭菌及产丁酸代谢改造*[J]. 中国生物工程杂志, 2022, 42(1/2): 37-45.
[5] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[6] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[7] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[8] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[9] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[10] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[11] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[12] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[13] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[14] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[15] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.