Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 27-36    DOI: 10.13523/j.cb.2112042
研究报告     
XIAP介导PTEN neddylation修饰促进结肠癌细胞增殖和迁移*
袁淑辉1,3,李少华2,方威2,彭志强3,张令强1,3,**()
1 青岛大学基础医学院 青岛 266071
2 南方医科大学第三临床医学院上海市奉贤区中心医院 上海 201499
3 军事科学院军事医学研究院生命组学研究所 蛋白质组学国家重点实验室 北京 100850
XIAP Mediated-PTEN Neddylation Promotes Proliferation and Migration of Colon Cancer Cells
YUAN Shu-hui1,3,LI Shao-hua2,FANG Wei2,PENG Zhi-qiang3,ZHANG Ling-qiang1,3,**()
1 School of Basic Medicine, Qingdao 266071, China
2 Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai 201499, China
3 State Key Laboratory of Proteomics, Beijing National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
 全文: PDF(3432 KB)   HTML
摘要:

目的:探讨XIAP(X-linked Apoptosis Inhibitor of Protein)介导的PTEN neddylation修饰对结肠癌细胞系SW480增殖和迁移能力的影响以及临床意义。方法:利用免疫组织化学技术对人结直肠癌及癌旁组织芯片中neddylation E3连接酶XIAP的表达情况进行检测,通过Western blot验证临床标本中人结直肠癌与癌旁组织中XIAP的表达情况;利用Co-IP检测SW480细胞系内源PTEN与XIAP的相互作用;利用CRISPR Cas9技术构建XIAP敲除的SW480细胞系,免疫沉淀技术检测XIAP 敲除的SW480细胞系中PTEN的neddylation修饰水平;变性条件下裂解临床结直肠癌与癌旁组织,利用免疫沉淀技术检测人结直肠癌与癌旁组织中PTEN 的 neddylation修饰水平;分别在XIAP敲除的SW480 细胞系与对照组 SW480 细胞系中回转或不回转FLAG-PTEN-Nedd8融合质粒来模拟恢复或者不恢复 SW480 细胞系中 PTEN的neddylation修饰水平,分别采用CCK8与Transwell实验探索XIAP-PTEN neddylation调控轴对SW480 细胞增殖与迁移的影响。结果:结直肠癌组织中XIAP表达高于癌旁组织;结肠癌细胞SW480中PTEN与XIAP具有相互作用;敲除XIAP抑制了PTEN neddylation修饰水平;结直肠癌组织PTEN neddylation修饰水平高于癌旁组织;敲除XIAP显著抑制SW480细胞的增殖和迁移能力,而过表达FLAG-PTEN-Nedd8融合质粒可挽救这种抑制作用。结论:在结直肠癌中,XIAP的蛋白质表达水平明显高于癌旁组织;XIAP介导的PTEN neddylation修饰水平明显高于癌旁组织。同时XIAP主要通过介导PTEN neddylation修饰促进了结肠癌细胞SW480的增殖和迁移。

关键词: 结直肠癌XIAPPTEN neddylation增殖迁移    
Abstract:

Objective: To explore the functional role of XIAP-PTEN neddylation axis in colorectal cancer at cell line and clinical level. Methods: The expression level of XIAP was analyzed in tissue microarray of colorectal cancer by immunohistochemical staining, and the protein level of XIAP was detected in human colorectal cancer and adjacent normal tissues by Western blot. Co-IP was performed to analyze the interaction between endogenous PTEN and XIAP in SW480 cell line. CRISPR Cas9 technology was used to construct XIAP-knockout SW480 cell line, and the neddylation level of PTEN was analyzed in sg-XIAP cells by immunoprecipitation and Western blot. XIAP knockout or wild type SW480 cell lines were co-transfected with FLAG-Vector or FLAG-PTEN-Nedd8 plasmid, and then CCK8 and Transwell experiments were used to assay the proliferation and migration of XIAP-PTEN neddylation axis in SW480 cells, respectively. Results: The expression levels of XIAP were up-regulated in colon and rectum cancer tissues compared with adjacent normal tissues. XIAP interacted with PTEN in SW480 colon cancer cells. Deletion of XIAP inhibited PTEN neddylation in SW480 cells. The level of PTEN neddylation was elevated in colorectal cancer tissues compared with adjacent normal tissues. Deletion of XIAP inhibited the proliferation and migration of SW480 cells significantly, while PTEN-Nedd8 fusion protein rescued the phenotypes of XIAP deletion in SW480 cells. Conclusion: XIAP-PTEN neddylation axis promotes SW480 colon cancer cell proliferation and migration.

Key words: Colorectal cancer    XIAP    PTEN neddylation    Proliferation    Migration
收稿日期: 2021-12-19 出版日期: 2022-06-17
ZTFLH:  Q28  
基金资助: *国家自然科学基金面上项目(81974428)
通讯作者: 张令强     E-mail: zhanglq@nic.bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
袁淑辉
李少华
方威
彭志强
张令强

引用本文:

袁淑辉,李少华,方威,彭志强,张令强. XIAP介导PTEN neddylation修饰促进结肠癌细胞增殖和迁移*[J]. 中国生物工程杂志, 2022, 42(5): 27-36.

YUAN Shu-hui,LI Shao-hua,FANG Wei,PENG Zhi-qiang,ZHANG Ling-qiang. XIAP Mediated-PTEN Neddylation Promotes Proliferation and Migration of Colon Cancer Cells. China Biotechnology, 2022, 42(5): 27-36.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2112042        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/27

图1  XIAP在结直肠癌中高表达
图2  结直肠癌中XIAP表达与PTEN neddylation水平显著正相关
图3  XIAP通过介导PTEN neddylation修饰促进结直肠癌细胞的增殖和迁移
图4  MLN4924和C75联合用药协同抑制SW480细胞的增殖及迁移
[1] Cao M M, Li H, Sun D Q, et al. Cancer burden of major cancers in China: a need for sustainable actions. Cancer Communications, 2020, 40(5): 205-210.
doi: 10.1002/cac2.12025
[2] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 2020, 70(1): 7-30.
doi: 10.3322/caac.21590
[3] Sansom O J, Meniel V, Wilkins J A, et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(38): 14122-14127.
[4] Chen J, Guo F, Shi X, et al. BRAF V600E mutation and KRAS Codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer, 2014, 14: 802.
doi: 10.1186/1471-2407-14-802
[5] Alitalo K, Schwab M, Lin C C, et al. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(6): 1707-1711.
[6] Ashton-Rickardt P G, Dunlop M G, Nakamura Y, et al. High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21-22. Oncogene, 1989, 4(10): 1169-1174.
pmid: 2797819
[7] Muzny D M, Bainbridge M N, Chang K, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487 (7407): 330-337.
doi: 10.1038/nature11252
[8] Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q 21 genes in FAP and colorectal cancer patients. Science, 1991, 253(5020): 665-669.
doi: 10.1126/science.1651563 pmid: 1651563
[9] Wang Y, Cao Y, Huang X, et al. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia. Scientific Reports, 2016, 6: 26688.
doi: 10.1038/srep26688
[10] Akkiprik M, Ataizi-Celikel C, Düᶊünceli F, et al. Clinical significance of p53, K-ras and DCC gene alterations in the stage I-II colorectal cancers. Journal of Gastrointestinal and Liver Diseases: JGLD, 2007, 16(1): 11-17.
[11] Djansugurova L, Zhunussova G, Khussainova E, et al. Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. Tumor Biology, 2015, 36(1): 279-289.
doi: 10.1007/s13277-014-2641-2
[12] Kleivi K, Lind G E, Diep C B, et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Molecular Cancer, 2007, 6: 2.
doi: 10.1186/1476-4598-6-2
[13] Markowitz S D, Bertagnolli M M. Molecular origins of cancer: molecular basis of colorectal cancer. The New England Journal of Medicine, 2009, 361(25): 2449-2460.
doi: 10.1056/NEJMra0804588 pmid: 20018966
[14] Álvarez-Garcia V, Tawil Y, Wise H M, et al. Mechanisms of PTEN loss in cancer: It’s all about diversity. Seminars in Cancer Biology, 2019, 59: 66-79.
doi: S1044-579X(18)30059-2 pmid: 30738865
[15] Song M S, Salmena L, Pandolfi P P. The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 2012, 13(5): 283-296.
doi: 10.1038/nrm3330 pmid: 22473468
[16] Okumura K, Mendoza M, Bachoo R M, et al. PCAF modulates PTEN activity. Journal of Biological Chemistry, 2006, 281(36): 26562-26568.
doi: 10.1074/jbc.M605391200 pmid: 16829519
[17] Trotman L C, Wang X J, Alimonti A, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 2007, 128(1): 141-156.
doi: 10.1016/j.cell.2006.11.040 pmid: 17218261
[18] van Themsche C, Leblanc V, Parent S, et al. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. Journal of Biological Chemistry, 2009, 284(31): 20462-20466.
doi: 10.1074/jbc.C109.009522 pmid: 19473982
[19] Maddika S, Kavela S, Rani N, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nature Cell Biology, 2011, 13 (6): 728-733.
doi: 10.1038/ncb2240
[20] Xu W T, Yang Z, Zhou S F, et al. Posttranslational regulation of phosphatase and tensin homolog (PTEN) and its functional impact on cancer behaviors. Drug Design, Development and Therapy, 2014, 8: 1745-1751.
[21] Xie P, Peng Z, Chen Y, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Research, 2021, 31 (3): 291-311.
doi: 10.1038/s41422-020-00443-z
[22] Xirodimas D P. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochemical Society Transactions, 2008, 36(5): 802-806.
doi: 10.1042/BST0360802
[23] Pan Z Q, Kentsis A, Dias D C, et al. Nedd8 on cullin: building an expressway to protein destruction. Oncogene, 2004, 23 (11): 1985-1997.
doi: 10.1038/sj.onc.1207414
[24] Huang D T, Ayrault O, Hunt H W, et al. E2-RING expansion of the NEDD 8 cascade confers specificity to cullin modification. Molecular Cell, 2009, 33(4): 483-495.
doi: 10.1016/j.molcel.2009.01.011
[25] Xirodimas D P, Saville M K, Bourdon J C, et al. Mdm2-mediated NEDD 8 conjugation of p53 inhibits its transcriptional activity. Cell, 2004, 118(1): 83-97.
pmid: 15242646
[26] Watson I R, Blanch A, Lin D C C, et al. Mdm2-mediated NEDD 8 modification of TAp73 regulates its transactivation function. Journal of Biological Chemistry, 2006, 281(45): 34096-34103.
doi: 10.1074/jbc.M603654200 pmid: 16980297
[27] Stickle N H, Chung J, Klco J M, et al. pVHL modification by NEDD 8 is required for fibronectin matrix assembly and suppression of tumor development. Molecular and Cellular Biology, 2004, 24(8): 3251-3261.
doi: 10.1128/MCB.24.8.3251-3261.2004
[28] Jiang Y N, Jia L J. Neddylation pathway as a novel anti-cancer target: mechanistic investigation and therapeutic implication. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15(9): 1127-1133.
doi: 10.2174/1871520615666150305111257
[29] Gai W B, Peng Z Q, Liu C H, et al. Advances in cancer treatment by targeting the neddylation pathway. Frontiers in Cell and Developmental Biology, 2021, 9: 653882.
doi: 10.3389/fcell.2021.653882
[30] Zhou L S, Jiang Y Y, Luo Q, et al. Neddylation: a novel modulator of the tumor microenvironment. Molecular Cancer, 2019, 18(1): 77.
doi: 10.1186/s12943-019-0979-1
[31] Soucy T A, Smith P G, Milhollen M A, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009, 458 (7239): 732-736.
doi: 10.1038/nature07884
[32] Sumi H, Inazuka M, Morimoto M, et al. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924). Biochemical and Biophysical Research Communications, 2016, 480(3): 380-386.
doi: 10.1016/j.bbrc.2016.10.058
[33] Oladghaffari M, Shabestani Monfared A, Farajollahi A, et al. MLN4924 and 2DG combined treatment enhances the efficiency of radiotherapy in breast cancer cells. International Journal of Radiation Biology, 2017, 93(6): 590-599.
doi: 10.1080/09553002.2017.1294272 pmid: 28291374
[34] Snaebjornsson M T, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metabolism, 2020, 31(1): 62-76.
doi: S1550-4131(19)30617-5 pmid: 31813823
[35] Xie P, Zhang M, He S, et al. The covalent modifier Nedd 8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nature Communications, 2014, 5: 3733.
doi: 10.1038/ncomms4733
[36] Zhou L S, Zhang W J, Sun Y, et al. Protein neddylation and its alterations in human cancers for targeted therapy. Cellular Signalling, 2018, 44: 92-102.
doi: 10.1016/j.cellsig.2018.01.009
[37] Wan J F, Zhu J, Li G C, et al. Radiosensitization of human colorectal cancer cells by MLN4924: an inhibitor of NEDD8-activating enzyme. Technology in Cancer Research & Treatment, 2016, 15(4): 527-534.
[38] Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. Cell Metabolism, 2013, 18(2): 153-161.
doi: 10.1016/j.cmet.2013.05.017 pmid: 23791484
[39] Beyaz S, Mana M D, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature, 2016, 531 (7592): 53-58.
doi: 10.1038/nature17173
[40] Zaytseva Y Y, Harris J W, Mitov M I, et al. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget, 2015, 6(22): 18891-18904.
doi: 10.18632/oncotarget.3783
[41] Wang H Y, Xi Q L, Wu G H. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Medicine, 2016, 5(7): 1599-1606.
doi: 10.1002/cam4.711
[42] Tu H L, Costa M. XIAP’s profile in human cancer. Biomolecules, 2020, 10(11): 1493.
doi: 10.3390/biom10111493
[1] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[2] 胡凯,胡静,孙子久,刘施妍,廖德宇,余伙梅,张彦. UPF1在乳腺癌细胞中的表达与作用的研究*[J]. 中国生物工程杂志, 2022, 42(1/2): 58-71.
[3] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[4] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[5] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[6] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[7] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[8] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[9] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[10] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[11] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[12] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[13] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[14] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[15] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.