Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 55-61    DOI: 10.13523/j.cb.2109014
综述     
自噬与间充质干细胞衰老的关系研究进展
邓嘉强,李韦瑶,钟丽君,余树民*()
四川农业大学动物医学院 成都 611130
Research Progress on the Relationship Between Autophagy and Mesenchymal Stem Cell Senescence
DENG Jia-qiang,LI Wei-yao,ZHONG Li-jun,YU Shu-min*()
College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
 全文: PDF(2941 KB)   HTML
摘要:

间充质干细胞(mesenchymal stem cells,MSCs)具备多向分化、免疫调控和靶向迁移的能力,在再生医学领域一直备受关注。但是,随着供体年龄的增长和体外培养时间的延长,MSCs通常表现出衰老特征。MSCs衰老以及功能衰退被认为是机体衰老和相关退行性疾病发展的重要诱发因素,同时也制约着MSCs在再生医学领域中的应用。自噬是溶酶体依赖途径介导细胞内物质的降解和再循环过程,是真核细胞的非核(细胞质)部分得以更新的有效途径,对维持细胞稳态至关重要,是调节MSCs衰老的潜在调控靶标。对MSCs衰老的表型特征、功能变化和分子机制,以及自噬与衰老之间的关系进行综述,为促进MSCs临床应用提供理论基础。

关键词: 间充质干细胞细胞衰老分化免疫抑制迁移自噬    
Abstract:

Mesenchymal stem cells (MSCs) have attracted great attention in regenerative medicine due to their capacities for multilineage differentiation, immunomodulation and migration. However, increased donor age and prolonged in vitro culture inevitably trigger senescence. MSC senescence and cellular dysfunction are considered one of the main causes of aging in an individual and the development of degenerative diseases, while they hinder the application of MSCs in regenerative medicine. As a major lysosome-dependent degradation and recycling pathway, autophagy is the mechanism through which the cytoplasmic components can be renewed, contributing to maintaining intracellular homeostasis and resisting environmental stress, and may become a potential therapeutic target for regulating MSC secescence. This review focuses on the phenotypic characterizations, functional alterations and molecular mechanisms in senescent MSCs, and the relationship between autophagy and senescence, which develop a theoretical foundation for the research and clinical application of MSCs.

Key words: Mesenchymal stem cells    Senescence    Differentiation    Immunosuppression    Migration    Autophagy
收稿日期: 2021-09-05 出版日期: 2022-04-07
ZTFLH:  Q255Q2.33  
通讯作者: 余树民     E-mail: yayushumin@sicau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓嘉强
李韦瑶
钟丽君
余树民

引用本文:

邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.

DENG Jia-qiang, LI Wei-yao, ZHONG Li-jun, YU Shu-min. Research Progress on the Relationship Between Autophagy and Mesenchymal Stem Cell Senescence. China Biotechnology, 2022, 42(3): 55-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2109014        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/55

图1  MSCs的衰老特征和分子机制
图2  自噬在MSC衰老中的调节作用
[1] Samsonraj R M, Raghunath M, Nurcombe V, et al. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Translational Medicine, 2017, 6(12):2173-2185.
doi: 10.1002/sctm.17-0129 pmid: 29076267
[2] Beerman I, Seita J, Inlay M, et al. Hematopoietic stem cell quiescence attenuates DNA damage repair and response contributing to age-dependent DNA damage accumulation. Experimental Hematology, 2014, 42(8):S24.
[3] Ferro F, Spelat R, Shaw G, et al. Survival/adaptation of bone marrow-derived mesenchymal stem cells after long-term starvation through selective processes. Stem Cells (Dayton, Ohio), 2019, 37(6):813-827.
doi: 10.1002/stem.2998
[4] Ceccariglia S, Cargnoni A, Silini A R, et al. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy, 2020, 16(1):28-37.
doi: 10.1080/15548627.2019.1630223 pmid: 31185790
[5] Ho T T, Warr M R, Adelman E R, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature, 2017, 543(7644):205-210.
doi: 10.1038/nature21388
[6] Hao H J, Chen G H, Liu J J, et al. Culturing on Wharton’s jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways. PLoS One, 2013, 8(3):e58314.
doi: 10.1371/journal.pone.0058314
[7] Pan X H, Chen Y H, Yang Y K, et al. Relationship between senescence in macaques and bone marrow mesenchymal stem cells and the molecular mechanism. Aging, 2019, 11(2):590-614.
doi: 10.18632/aging.v11i2
[8] Wang D J, Jang D J. Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells. Cancer Research, 2009, 69(20):8200-8207.
doi: 10.1158/0008-5472.CAN-09-1976
[9] Yang Y H K, Ogando C R, See C W, et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research & Therapy, 2018, 9(1):131.
[10] Carlessi L, De Filippis L, Lecis D, et al. DNA-damage response, survival and differentiation in vitro of a human neural stem cell line in relation to ATM expression. Cell Death & Differentiation, 2009, 16(6):795-806.
[11] Minieri V, Saviozzi S, Gambarotta G, et al. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2015, 19(4):734-743.
doi: 10.1111/jcmm.12387
[12] Zhang H Y, Sun L L, Wang K, et al. Loss of H3K9me3 correlates with ATM activation and histone H2AX phosphorylation deficiencies in Hutchinson-Gilford progeria syndrome. PLoS One, 2016, 11(12):e0167454.
doi: 10.1371/journal.pone.0167454
[13] Stab B R, Martinez L, Grismaldo A, et al. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs. Frontiers in Aging Neuroscience, 2016, 8:299.
[14] Kim J, Ko J. A novel PPARγ2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Cell Death & Differentiation, 2014, 21(10):1642-1655.
[15] Lee J S, Lee J M, Im G I. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Biomaterials, 2011, 32(3):760-768.
doi: 10.1016/j.biomaterials.2010.09.042
[16] 孙泽绪, 赵辰, 廖军义, 等. 抑制Runx2的表达增强BMP2诱导的干细胞成软骨分化. 中国生物工程杂志, 2016, 36(4):57-62.
Sun Z X, Zhao C, Liao J Y, et al. Suppression of Runx2 potentiates BMP2-induced chondrogenic differentiation. China Biotechnology, 2016, 36(4):57-62.
[17] Geissler S, Textor M, Kühnisch J, et al. Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One, 2012, 7(12):e52700.
doi: 10.1371/journal.pone.0052700
[18] Choudhery M S, Badowski M, Muise A, et al. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of Translational Medicine, 2014, 12:8.
doi: 10.1186/1479-5876-12-8 pmid: 24397850
[19] Liu M C, Lei H, Dong P, et al. Adipose-derived mesenchymal stem cells from the elderly exhibit decreased migration and differentiation abilities with senescent properties. Cell Transplantation, 2017, 26(9):1505-1519.
doi: 10.1177/0963689717721221
[20] Khanh V C, Zulkifli A F, Tokunaga C, et al. Aging impairs beige adipocyte differentiation of mesenchymal stem cells via the reduced expression of Sirtuin 1. Biochemical and Biophysical Research Communications, 2018, 500(3):682-690.
doi: 10.1016/j.bbrc.2018.04.136
[21] Cheng H C, Qiu L, Ma J, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Molecular Biology Reports, 2011, 38(8):5161-5168.
doi: 10.1007/s11033-010-0665-2
[22] 常铖, 刘梦婷, 张权, 等. 长期传代培养人脐带间充质干细胞免疫调节功能的比较. 中国细胞生物学学报, 2020, 42(4):609-619.
Chang C, Liu M T, Zhang Q, et al. Comparison of immunomodulatory functions in human umbilical cord mesenchymal stem cells after long-term expansion. Chinese Journal of Cell Biology, 2020, 42(4):609-619.
[23] 李丹婷, 黄晓雅, 白利鹏, 等. IFN-γ对犬BMSCs增殖及分泌多种免疫抑制因子的影响. 中国免疫学杂志, 2019, 35(19):2326-2331.
Li D T, Huang X Y, Bai L P, et al. Effect of IFN-γon proliferation and secretion of various immunosuppressive factors in canine BMSCs. Chinese Journal of Immunology, 2019, 35(19):2326-2331.
[24] Yu K R, Lee J Y, Kim H S, et al. A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS One, 2014, 9(8):e102426.
doi: 10.1371/journal.pone.0102426
[25] Lee J Y, Yu K R, Kim H S, et al. BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY), 2016, 8(8):1670-1689.
[26] Sepúlveda J C, Tomé M, Fernández M E, et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells (Dayton, Ohio), 2014, 32(7):1865-1877.
doi: 10.1002/stem.1654
[27] Rombouts W J C, Ploemacher R E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003, 17(1):160-170.
pmid: 12529674
[28] Tang D D, Gerlach B D. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respiratory Research, 2017, 18(1):54.
doi: 10.1186/s12931-017-0544-7
[29] Jung E M, Kwon O, Kwon K S, et al. Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2011, 404(1):463-469.
doi: 10.1016/j.bbrc.2010.12.003 pmid: 21144825
[30] Jakovljevic J, Harrell C R, Fellabaum C, et al. Modulation of autophagy as new approach in mesenchymal stem cell-based therapy. Biomedicine & Pharmacotherapy, 2018, 104:404-410.
doi: 10.1016/j.biopha.2018.05.061
[31] Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell, 2018, 17(1):e12709.
doi: 10.1111/acel.2018.17.issue-1
[32] Wan Y X, Zhuo N Q, Li Y L, et al. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae. Biochemical and Biophysical Research Communications, 2017, 488(1):46-52.
doi: 10.1016/j.bbrc.2017.05.004
[33] Beaupere C, Garcia M, Larghero J, et al. The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation. Aging Cell, 2015, 14(4):534-546.
doi: 10.1111/acel.12308 pmid: 25847297
[34] Liu Z Z, Hong C G, Hu W B, et al. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy, 2021, 17(10):2766-2782.
doi: 10.1080/15548627.2020.1839286
[35] Yang M, Wen T, Chen H X, et al. Knockdown of insulin-like growth factor 1 exerts a protective effect on hypoxic injury of aged BM-MSCs: role of autophagy. Stem Cell Research & Therapy, 2018, 9(1):284.
[36] Zhang Y L, Zhu W W, He H W, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging (Albany NY), 2019, 11(24):12641-12660.
[37] Zhang D Y, Chen Y F, Xu X B, et al. Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clinical and Experimental Pharmacology & Physiology, 2020, 47(3):466-477.
[38] Kheirandish M, Gavgani S P, Samiee S. The effect of hypoxia preconditioning on the neural and stemness genes expression profiling in human umbilical cord blood mesenchymal stem cells. Transfusion and Apheresis Science, 2017, 56(3):392-399.
doi: S1473-0502(17)30056-3 pmid: 28428031
[39] Kim C, Park J M, Song Y, et al. HIF1α-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy. Aging Cell, 2019, 18(2):e12909.
doi: 10.1111/acel.12909
[40] Capasso S, Alessio N, Squillaro T, et al. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget, 2015, 6(37):39457-39468.
doi: 10.18632/oncotarget.v6i37
[41] Zheng Y, Hu C J, Zhuo R H, et al. Inhibition of autophagy alleviates the senescent state of rat mesenchymal stem cells during long-term culture. Molecular Medicine Reports, 2014, 10(6):3003-3008.
doi: 10.3892/mmr.2014.2624 pmid: 25310478
[42] Zheng Y, Lei Y S, Hu C H, et al. P53 regulates autophagic activity in senescent rat mesenchymal stromal cells. Experimental Gerontology, 2016, 75:64-71.
doi: 10.1016/j.exger.2016.01.004 pmid: 26792455
[43] Chang T C, Hsu M F, Wu K K. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One, 2015, 10(5):e0126537.
doi: 10.1371/journal.pone.0126537
[44] Yun S P, Han Y S, Lee J H, et al. Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-cresol via inhibiting mTOR-dependent autophagy. Biomolecules & Therapeutics, 2018, 26(4):389-398.
[45] Zhang M Y, Du Y, Lu R Z, et al. Cholesterol retards senescence in bone marrow mesenchymal stem cells by modulating autophagy and ROS/p53/p21Cip1/Waf1 pathway. Oxidative Medicine and Cellular Longevity, 2016, 2016:7524308.
[46] Molaei S, Roudkenar M H, Amiri F, et al. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Research, 2015, 50(2):80-86.
doi: 10.5045/br.2015.50.2.80
[1] 胡凯,胡静,孙子久,刘施妍,廖德宇,余伙梅,张彦. UPF1在乳腺癌细胞中的表达与作用的研究*[J]. 中国生物工程杂志, 2022, 42(1/2): 58-71.
[2] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[3] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[4] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[5] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[6] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[7] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[8] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[9] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[10] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[11] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[12] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[13] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[14] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[15] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.