Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 58-71    DOI: 10.13523/j.cb.2107052
研究报告     
UPF1在乳腺癌细胞中的表达与作用的研究*
胡凯,胡静,孙子久,刘施妍,廖德宇,余伙梅,张彦()
重庆医科大学检验医学院 临床检验诊断学教育部重点实验室 重庆 400016
Effects of UPF1 on the Proliferation, Migration and Invasion of Breast Cancer Strains MDA-MB-231 and MCF-7
HU Kai,HU Jing,SUN Zi-jiu,LIU Shi-yan,LIAO De-yu,YU Huo-mei,ZHANG Yan()
Key Laboratory of Clinical Laboratory Diagnosis, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
 全文: PDF(8919 KB)   HTML
摘要:

目的:观察UPF1在乳腺癌中的表达,对人乳腺癌细胞MDA-MB-231增殖、迁移和侵袭的影响,及其可能的作用机制。方法:使用生物信息学方法分析UPF1在乳腺癌组织中的表达及作用,构建UPF1小干扰RNA(siRNA)并转染乳腺癌MDA-MB-231和MCF-7细胞株,构建外源性的UPF1低表达的重组细胞,通过实时荧光定量PCR法和蛋白质印迹法检测重组细胞中UPF1的表达水平;CCK-8法检测细胞的增殖;划痕愈合实验及Transwell小室法分别检测细胞横向和纵向迁移以及侵袭能力;实时荧光定量PCR法检测基质金属蛋白酶9(matrix metalloproteinase,MMP9)以及上皮-间质转化(epithelial-mesenchymal transition,EMT)标志物E-钙黏着蛋白(E-cadherin)、波形蛋白(vimentin)mRNA表达量的变化;蛋白质印迹法检测MMP2、E-cadherin、Vimentin蛋白表达量的变化。结果:生物信息学分析表明UPF1在乳腺癌肿瘤组织中高表达,与免疫细胞浸润相关,并与抑癌基因表达呈正相关,mRNA水平进一步验证UPF1在乳腺癌细胞中高表达,敲低UPF1后,乳腺癌细胞MDA-MB-231和MCF-7中UPF1的mRNA和蛋白质表达水平均显著下降(P<0.05,P<0.05),MDA-MB-231和MCF-7 细胞的体外增殖能力显著增强(P<0.0001,P<0.05),迁移(P<0.05,P<0.001)与侵袭能力(P<0.01,P<0.01)也显著提升,实时荧光定量PCR、Western blot 结果显示UPF1可抑制 EMT 相关通路。结论:UPF1在乳腺癌中高表达,但是UPF1在乳腺癌中可能起抑癌作用,UPF1可能通过抑制 EMT 通路抑制乳腺癌 MDA-MB-231和MCF-7 细胞的增殖、迁移与侵袭。

关键词: 乳腺癌UPF1增殖迁移侵袭EMT    
Abstract:

Objective: To investigate the effects of UPF1 on the proliferation, migration and invasion of human breast cancer cells MDA-MB-231 and its possible mechanism. Methods: The role of UPF1 in breast cancer and the expression level of UPF1 in pan-cancer and breast cancer was evaluated by bioinformatics analysis. Breast cancer cells MDA-MB-231 and MCF-7 were transfected with siRNA. The experiment was divided into two groups: control group (transfected with siRNA negative control) and treatment group (transfected with siUPF1). The mRNA and protein levels of UPF1, MMP9, EMT-related makers were measured by qRT-PCR and Western blot; the proliferation of MDA-MB-231 and MCF-7 cells was detected by CCK-8 assay; the lateral migration ability was studied by wound healing assay; the longitudinal migration and invasion abilities were evaluated by Transwell migration and invasion assays. Results: Bioinformatics analysis showed that UPF1 was highly expressed in breast cancer and associated with immune cell infiltration processes and positively correlated with tumor suppressor genes. UPF1 was also highly expressed in breast cancer cells. After knockdown of UPF1, the mRNA and protein expression levels of UPF1 in MDA-MB-231 and MCF-7 breast cancer cells were significantly decreased (P<0.05, P<0.05). Furthermore, the proliferation, migration and invasion abilities of MDA-MB-231 and MCF-7 cells were significantly enhanced. The mRNA and protein levels of MMP9 and Vimentin were increased, but E-cadherin decreased. Conclusion: UPF1 is highly expressed but plays a cancer-inhibiting role in breast cancer. UPF1 may inhibit the proliferation, migration and invasion of breast cancer MDA-MB-231 and MCF-7 cells by inhibiting the EMT signaling pathway.

Key words: Breast cancer    UPF1    Proliferation    Migration    Invasion    EMT
收稿日期: 2021-07-23 出版日期: 2022-03-03
ZTFLH:  Q813  
基金资助: * 国家自然科学基金资助项目(81974449)
通讯作者: 张彦     E-mail: yanzhang@cqmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡凯
胡静
孙子久
刘施妍
廖德宇
余伙梅
张彦

引用本文:

胡凯,胡静,孙子久,刘施妍,廖德宇,余伙梅,张彦. UPF1在乳腺癌细胞中的表达与作用的研究*[J]. 中国生物工程杂志, 2022, 42(1/2): 58-71.

HU Kai,HU Jing,SUN Zi-jiu,LIU Shi-yan,LIAO De-yu,YU Huo-mei,ZHANG Yan. Effects of UPF1 on the Proliferation, Migration and Invasion of Breast Cancer Strains MDA-MB-231 and MCF-7. China Biotechnology, 2022, 42(1/2): 58-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2107052        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/58

Name Sequence
siRNA negative control (siNC) Forward primer(5'→3'): UUCUCCGAACGUGUCACGUdTdT
Reverse primer(5'→3'): ACGUGACACGUUCGGAGAATTdTdT
siUPF1 Forward primer(5'→3'): GCAAGAAGUGGUUCUGCAAdTdT
Reverse primer(5'→3'): UUGCAGAACCACUUCUUGCdTdT
E-cadherin Forward primer(5'→3'): TTAATCCGGACACTGGTGCC
Reverse primer(5'→3'): AGATGAGGCCCCCTTACCAT
Vimentin Forward primer(5'→3'): CAGGAAATCCAGGAGCTGCA
Reverse primer(5'→3'): ACCATTCTTCTGCCTCCTGC
MMP9 Forward primer(5'→3'): CCCTTGTGCTCTTCCCTGGA
Reverse primer(5'→3'): TCTGCCACCCGAGTGTAACC
GAPDH Forward primer(5'→3'): CAGCGACACCCACTCCTC
Reverse primer(5'→3'): TGAGGTCCACCACCCTGT
表1  实时荧光定量PCR引物序列
图1  UPF1在乳腺癌组织中表达上调
图2  UPF1与免疫浸润相关
图3  UPF1与NMD相关分子及抑癌基因呈正相关
图4  UPF1在乳腺癌MDA-MB-231和MCF-7细胞中成功敲低
图5  UPF1抑制乳腺癌细胞的增殖
图6  UPF1抑制乳腺癌细胞的迁移
图7  UPF1抑制乳腺癌细胞的侵袭
图8  UPF1抑制EMT信号通路
图9  UPF1调控EMT的潜在途径
[1] Britt K L, Cuzick J, Phillips K A. Key steps for effective breast cancer prevention. Nature Reviews Cancer, 2020, 20(8):417-436.
doi: 10.1038/s41568-020-0266-x pmid: 32528185
[2] The Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature, 2007, 447(7145):661-678.
doi: 10.1038/nature05911
[3] Slamon D J, Clark G M, Wong S G, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785):177-182.
doi: 10.1126/science.3798106 pmid: 3798106
[4] Frischmeyer P A, van Hoof A, O’Donnell K, et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science, 2002, 295(5563):2258-2261.
doi: 10.1126/science.1067338
[5] Lindeboom R G H, Vermeulen M, Lehner B, et al. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nature Genetics, 2019, 51(11):1645-1651.
doi: 10.1038/s41588-019-0517-5 pmid: 31659324
[6] Rebbapragada I, Lykke-Andersen J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Current Opinion in Cell Biology, 2009, 21(3):394-402.
doi: 10.1016/j.ceb.2009.02.007 pmid: 19359157
[7] Shobha V, Stuart W, Carol J. Non-stop decay: a new mRNA surveillance pathway. BioEssays, 2002, 24(9):785-788.
doi: 10.1002/(ISSN)1521-1878
[8] Schaeffer D, van Hoof A. Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs. PNAS, 2011, 108(6):2366-2371.
doi: 10.1073/pnas.1013180108 pmid: 21262801
[9] Doma M K, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 2006, 440(7083):561-564.
doi: 10.1038/nature04530
[10] Shoemaker C J, Eyler D E, Green R. Dom34: Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science, 2010, 330(6002):369-372.
doi: 10.1126/science.1192430
[11] Kervestin S, Jacobson A. NMD: a multifaceted response to premature translational termination. Nature Reviews Molecular Cell Biology, 2012, 13(11):700-712.
doi: 10.1038/nrm3454
[12] Bartha Á, Györffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. International Journal of Molecular Sciences, 2021, 22(5):2622.
doi: 10.3390/ijms22052622
[13] Chandrashekar D S, Bashel B, Balasubramanya S A H, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (New York, N Y), 2017, 19(8):649-658.
[14] Cerami E, Gao J J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data: figure 1. Cancer Discovery, 2012, 2(5):401-404.
doi: 10.1158/2159-8290.CD-12-0095 pmid: 22588877
[15] Li T W, Fu J X, Zeng Z X, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 2020, 48(W1):W509-W514.
doi: 10.1093/nar/gkaa407
[16] Tang Z F, Li C W, Kang B X, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 2017, 45(W1):W98-W102.
doi: 10.1093/nar/gkx247
[17] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1):7-33.
doi: 10.3322/caac.v71.1
[18] Chen W Q, Zheng R S, Baade P D, et al. Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 2016, 66(2):115-132.
doi: 10.3322/caac.21338
[19] Fan L, Strasser-Weippl K, Li J J, et al. Breast cancer in China. The Lancet Oncology, 2014, 15(7):e279-e289.
doi: 10.1016/S1470-2045(13)70567-9
[20] Leeds P, Wood J M, Lee B S, et al. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1992, 12(5):2165-2177.
doi: 10.1128/mcb.12.5.2165-2177.1992 pmid: 1569946
[21] Peltz S W, Brown A H, Jacobson A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes & Development, 1993, 7(9):1737-1754.
doi: 10.1101/gad.7.9.1737
[22] Lykke-Andersen S, Jensen T H. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nature Reviews Molecular Cell Biology, 2015, 16(11):665-677.
doi: 10.1038/nrm4063 pmid: 26397022
[23] Karousis E D, Gurzeler L A, Annibaldis G, et al. Human NMD ensues independently of stable ribosome stalling. Nature Communications, 2020, 11(1):1-12.
doi: 10.1038/s41467-019-13993-7
[24] McIlwain D R, Pan Q, Reilly P T, et al. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. PNAS, 2010, 107(27):12186-12191.
doi: 10.1073/pnas.1007336107 pmid: 20566848
[25] Weischenfeldt J, Damgaard I, Bryder D, et al. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes & Development, 2008, 22(10):1381-1396.
doi: 10.1101/gad.468808
[26] Bühler M, Steiner S, Mohn F, et al. EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3' UTR length. Nature Structural & Molecular Biology, 2006, 13(5):462-464.
doi: 10.1038/nsmb1081
[27] Eberle A B, Stalder L, Mathys H, et al. Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region. PLoS Biology, 2008, 6(4):e92. DOI: 10.1371/journal.pbio.0060092.
doi: 10.1371/journal.pbio.0060092
[28] Singh G, Rebbapragada I, Lykke-Andersen J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biology, 2008. 6(4):e111.
doi: 10.1371/journal.pbio.0060111
[29] Frischmeyer P A. Nonsense-mediated mRNA decayin health and disease. Human Molecular Genetics, 1999, 8(10):1893-1900.
pmid: 10469842
[30] Holbrook J A, Neu-Yilik G, Hentze M W, et al. Nonsense-mediated decay approaches the clinic. Nature Genetics, 2004, 36(8):801-808.
pmid: 15284851
[31] Nickless A, Bailis J M, You Z S. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell & Bioscience, 2017, 7(1):1-12.
[32] Karousis E D, Nasif S, Mühlemann O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdisciplinary Reviews: RNA, 2016, 7(5):661-682.
doi: 10.1002/wrna.1357
[33] Supek F, Lehner B, Lindeboom R G H. To NMD or not to NMD: nonsense-mediated mRNA decay in cancer and other genetic diseases. Trends in Genetics, 2021, 37(7):657-668.
doi: 10.1016/j.tig.2020.11.002 pmid: 33277042
[34] Xing T R, Chen P, Wu J M, et al. UPF1 participates in the progression of endometrial cancer by inhibiting the expression of lncRNA PVT1. OncoTargets and Therapy, 2020, 13:2103-2114.
doi: 10.2147/OTT
[35] Lv Z, Wang Z, Li Z. LncRNA PVT1 aggravates the progression of glioma via downregulating UPF1. European Review for Medical and Pharmacological Sciences, 2019, 23(20):8956-8963.
doi: 19294 pmid: 31696483
[36] Pei C, Fei K, Yuan X, et al. LncRNA DANCR aggravates the progression of ovarian cancer by downregulating UPF1. European Review for Medical and Pharmacological Sciences, 2019, 23(24):10657-10663.
doi: 19763 pmid: 31858532
[37] Zhou Y L, Li Y D, Wang N, et al. UPF1 inhibits the hepatocellular carcinoma progression by targeting long non-coding RNA UCA1. Scientific Reports, 2019, 9(1):1-8.
[38] Zhu C C, Zhang L, Zhao S L, et al. UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death & Disease, 2021, 12(6):1-15.
[39] Bordonaro M, Lazarova D. Amlexanox and UPF1 modulate wnt signaling and apoptosis in HCT-116 colorectal cancer cells. Journal of Cancer, 2019, 10(2):287-292.
doi: 10.7150/jca.28331 pmid: 30719122
[40] Liu C, Karam R, Zhou Y Q, et al. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nature Medicine, 2014, 20(6):596-598.
doi: 10.1038/nm.3548
[1] 邓嘉强,李韦瑶,钟丽君,余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[2] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[3] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[4] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[5] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[6] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[7] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[8] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 刘善辉,何魏,马文斐,李兰兰,卢建中,陶燕,张静,付生军. KLF8表达修饰及致瘤机制研究进展[J]. 中国生物工程杂志, 2019, 39(8): 80-85.
[11] 先洁,覃雪,曹友德. Numb在三阴乳腺癌中抑制HDM2泛素化降解p53 *[J]. 中国生物工程杂志, 2019, 39(7): 1-7.
[12] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[13] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[14] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[15] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.