Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 1-12    DOI: 10.13523/j.cb.20191101
研究报告     
shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *
段李梅1,杨锦潇1,刘佳渝2,郑永波2,吴小候2,罗春丽1,**()
1 重庆医科大学检验医学院 重庆医科大学临床检验诊断学教育部重点实验室 重庆 400016
2 重庆医科大学附属第一医院 重庆 400016
shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway
DUAN Li-mei1,YANG Jin-xiao1,LIU Jia-yu2,ZHENG Yong-bo2,WU Xiao-hou2,LUO Chun-li1,**()
1 Key Laboratory of Clinical Diagnostics Founded by Ministry of Education, College of Laboratory,Chongqing Medical University, Chongqing 400016, China
2 The First Affiliated Hospital of Chongqing, Medical University, Chongqing 400016, China
 全文: PDF(2275 KB)   HTML
摘要:

目的 该研究旨在探讨磷脂酰肌醇特异性磷脂酶C epsilon(phospholipase C epsilon, PLCε)对前列腺癌细胞丝氨酸/甘氨酸代谢及细胞增殖的影响。方法 慢病毒及质粒转染LNCAP、PC3细胞,q-PCR、Western blot分别检测LNCAP、PC3细胞中 PLCε、Yes相关蛋白(yes associated protein,YAP)、丝氨酸/甘氨酸生成酶[包括磷酸丝氨酸转氨酶1(phosphoserine aminotransferase1,PSAT1)、磷酸丝氨酸磷酸酶(phosphoserine phosphatase,PSPH)、丝氨酸羟甲基转移酶2(serine hydroxymethyltransferase2,SHMT2)及增殖相关基因细胞周期蛋白D1(Cyclin D1)、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)]的表达情况;克隆形成实验及MTT实验检测细胞的克隆形成率及增殖活性。结果 (1)感染LV-shPLCε可显著下调前列腺癌细胞LNCAP、PC3中的PLCε、YAP、PSAT1、PSPH、SHMT2及增殖相关基因的mRNA及蛋白质水平,同时抑制细胞的克隆形成能力和增殖活性;(2)在shPLCε组细胞中加入过表达YAP质粒后,能明显逆转YAP、PSAT1、PSPH、SHMT2及增殖相关基因的下调,但加入干扰YAP质粒后结果相反。结论 shPLCε可通过下调YAP的表达抑制前列腺癌细胞的丝氨酸/甘氨酸生成,从而抑制细胞的增殖。

关键词: 前列腺癌磷脂酰肌醇特异性磷脂酶CepsilonYes相关蛋白丝氨酸/甘氨酸代谢增殖    
Abstract:

Objective: To investigate the effects of phospholipase C epsilon on serine/glycine metabolism and cell proliferation in prostate cancer cells.Methods: Lentivirus and plasmid were transfected into LNCAP and PC3 cells. The expression of YAP, serine/glycine producing enzyme (PSAT1,PSPH,SHMT2) and proliferation-related genes (Cyclin D1,PCNA) were detected by q-PCR and Western blot. The cloning formation experiment and MTT assays were used to detect the clone formation rate and cell proliferation activity.Results: (1) Infection with LV-shPLCε significantly down-regulated the mRNA and protein levels of PLCε,YAP,serine/glycine producing enzymes (PSAT1,PSPH,SHMT2) and proliferation genes (Cyclin D1,PCNA) in prostate cancer cells LNCAP and PC3. At the same time, it inhibits the clone formation ability and proliferative activity of LNCAP and PC3 cells. (2) After adding over-expressing YAP plasmid to shPLCε group, YAP,serine/glycine producing enzymes and proliferation genes were significantly reversed. but the results of the interference with the down YAP plasmid were reversed.Conclusion: shPLCε inhibits the serine/glycine metabolism and proliferation in prostate cancer cells by down-regulating the expression of YAP.

Key words: Prostate cancer    PLCε    YAP    Serine/Glycine metabolism    Proliferation
收稿日期: 2019-04-15 出版日期: 2019-12-17
ZTFLH:  Q814  
基金资助: * 国家自然科学基金(81072086)
通讯作者: 罗春丽     E-mail: luochunli79@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段李梅
杨锦潇
刘佳渝
郑永波
吴小候
罗春丽

引用本文:

段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.

DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway. China Biotechnology, 2019, 39(11): 1-12.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191101        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/1

病毒名称 病毒序列(5'→3')
LV-shPLCε Sense: GGTTCTCTCCTAGAAGCAACC
Anti-sense: CCAAGAGAGGATCTTCGTTGG
LV-shNC Sense: TTCTCCGAACGTGTCACGT
Anti-sense: AAGAGGCTTGCACAGTGCA
  
基因 上游引物(5'→3') 下游引物(5'→3')
PLCε GGAGAATCCTCGGTAG GGTTGTCAGCGTATGTCC
YAP TAGCCCTGCGTAGCCAGTTA TCATGCTTAGTCCACTGTCTGT
PSAT1 TGCCGCACTCAGTGTTGTTAG GCAATTCCCGCACAAGATTCT
PSPH GAGGACGCGGTGTCAGAAAT GGTTGCTCTGCTATGAGTCTCT
SHMT2 CCCTTCTGCAACCTCACGAC TGAGCTTATAGGGCATAGACTCG
Cyclin D1 GCTGGAGCCCGTGAAAAAGA CTCCGCCTCTGGCATTTTG
PCNA TCAAGAAGGTGTTGGAGGCA CAGCGGTAGGTGTCGAAGC
β-actin GGGACCTGACTGACTACCTC ACGAGACCACCTTCAACTCCAC
表2  q-PCR引物信息
质粒名称 质粒序列(5'→3')
pcDNA Flag Yap1 Sense:GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATG
Antisense:CTGCCTAGCCCTCTAGAGGGCTAGGGGATACCAGCTGAGAGTCATGTTAGACGAGACTAC
pcDNA3.2/EV Sense:GACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCC
Antisense:CTGTAACTAATAACTGATCAATAATTATCATTAGTTAATGCCCCAGTAATCAAGTATCGG
pGPU6/GFP/Neo-YAP1 Sense: CACCGCCACCAAGCTAGATAAAGAATTCAAGAGATTCTTTATCTAGCTTGGTGGCTTTTTTG
Antisense:GATCCAAAAAAGCCACCAAGCTAGATAAAGAATCTCTTGAATTCTTTATCTAGCTTGGTGGC
pGPU6/GFP/Neo-shNC Sense:CACCGTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTTG
Antisense:GATCCAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAC
表3  质粒信息
图1  转染shPLCε慢病毒后LNCAP和PC3细胞中PLCε的mRNA和蛋白质水平
图2  LNCAP和PC3细胞的克隆形成实验 (a)Clone formation experiments of LNCAP (b)Clone numbers of LNCAP (c)Clone formation experiments of PC3 (d)Clone numbers of PC3 * P<0.05, ** P<0.01,*** P<0.001
图3  LNCAP和PC3细胞的MTT实验(72h)
图4  转染shPLCε后LNCAP和PC3细胞中PLCε、YAP、丝氨酸/甘氨酸生成酶、增殖相关基因的mRNA水平
图5  转染shPLCε后LNCAP和PC3细胞中YAP、丝氨酸/甘氨酸生成酶、增殖相关基因的蛋白质水平
  Fig.6 mRNA and protein levels of YAP in LNCAP and PC3 cells infected with over-expression or knockdown of YAP plasmid (a)mRNA level of YAP in LNCAP infected with over-expression or sh-YAP plasmid by q-PCR (b)mRNA level of YAP in PC3 infected with over-expression or sh-YAP plasmid by q-PCR (c)Western blot of YAP in LNCAP (d)Relative protein level of LNCPA (e)Western blot of YAP in PC3 (f)Relative protein level of PC3 * P<0.05, ** P<0.01, *** P<0.001
图7  转染过表达或敲低YAP质粒后LNCAP和PC3细胞中PLCε、YAP、丝氨酸/甘氨酸生成酶、增殖相关基因的mRNA水平
图8  转染过表达或敲低YAP质粒后LNCAP和PC3中PLCε、YAP、丝氨酸/甘氨酸生成酶、增殖相关基因的蛋白质水平
[1] Torre L A, Bray F, Siegel R L , et al. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2015,65(2):87-108.
doi: 10.3322/caac.21262 pmid: 25651787
[2] 叶定伟 . 前列腺癌的流行病学和中国的发病趋势. 中华外科杂志, 2006,6:362-364
Ye D W . Epidemiology of prostate cancer and the incidence of disease in China. Chinese Journal of Surgery, 2006,6:362-364.
[3] 余朝文 . 基于质谱技术的临床重要疾病代谢相关标志物的鉴定及应用研究. 重庆:重庆医科大学, 2018.
Yu C W . Identification and application of metabolic related markers in clinically important diseases based on mass spectrometry. Chongqing:Chongqing Medical University, 2018.
[4] Dereziński P, Klupczynska A, Sawicki W , et al. Amino acid profiles of serum and urine in search for prostate cancer biomarkers: a pilot study. International Journal of Medical Sciences, 2017,14(1):1-12.
doi: 10.7150/ijms.15783 pmid: 28138303
[5] Locasale J W . Serine glycine and one-carbon units: cancer metabolism in full circle.Nature Reviews. Cancer, 2013,13(8):572-583.
doi: 10.1038/nrc3557 pmid: 23822983
[6] Ada-Nguema A S, Xenias H, Hofman J M , et al. The small GTPase R-ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. Journal of Cell Science, 2006,119(Pt 7):1307-1319.
doi: 10.1242/jcs.02835 pmid: 16537651
[7] Song C, Hu C D, Masago M , et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by ras. The Journal of Biological Chemistry, 2001,276(4):2752-2757.
doi: 10.1074/jbc.M008324200 pmid: 11022048
[8] Wang X, Fan Y, Du Z , et al. Knockdown of phospholipase Cε(PLCε)inhibits cell proliferation via phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/AKT signaling pathway in human prostate cancer. Medical Science Monitor, 2018,24:254-263.
doi: 10.12659/msm.908109 pmid: 29330357
[9] 王晓亮, 彭志海 . 磷酯酶C家族新成员——磷酯酶CE1. 医学分子生物学杂志, 2008,4:332-335.
Wang X L, Peng Z H . A new member of the phospholipase C family——phospholipase CE1. Journal of Medical Molecular Biology, 2008,4:332-335.
[10] Abnet C C, Freedman N D, Hu N , et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nature Genetics, 2010,42(9):764-767.
doi: 10.1038/ng.649 pmid: 20729852
[11] Smrcka A V, Brown J H . Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cellular Signalling, 2012,24(6):1333-1343.
doi: 10.1016/j.cellsig.2012.01.009
[12] Yang X, Ou L, Tang M , et al. Knockdown of PLCε inhibits inflammatory cytokine release via STAT3 phosphorylation in human bladder cancer cells. Tumour Biology, 2015,36(12):9723-9732.
doi: 10.1007/s13277-015-3712-8 pmid: 26156799
[13] 郝燕妮, 李婷, 范佳鑫 , 等. shPLCε通过下调CDC25A抑制T24细胞的瓦伯格效应. 中国生物工程杂志, 2018,38(5):33-39.
Hao Y N, Li T, Fan J X , et al. The inhibition of the WBS effect of T24 cells by down-regulating CDC25A by shPLCε. China Biotechnology, 2018,38(5):33-39.
[14] Amelio I, Cutruzzolá F, Antonov A , et al. Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 2014,39(4):191-198.
doi: 10.1016/j.tibs.2014.02.004
[15] Mattaini K R, Sullivan M R . The importance of serine metabolism in cancer. The Journal of Cell Biology, 2016,214(3):249-257.
doi: 10.1083/jcb.201604085 pmid: 27458133
[16] Maddocks O D K, Athineos D, Cheung E C , et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 2017,544(7650):372-376.
doi: 10.1038/nature22056 pmid: 28425994
[17] Maddocks O D, Berkers C R, Mason S M , et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013,493(7433):542-546.
doi: 10.1038/nature11743
[18] Gao X, Locasale J W . Serine and methionine metabolism: vulnerabilities in lethal prostate cancer. Cancer Cell, 2019,35(3):339-341.
doi: 10.1016/j.ccell.2019.02.014 pmid: 30889375
[19] Reina-Campos M, Linares J F, Duran A , et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell, 2019,35(3):385-400.
doi: 10.1016/j.ccell.2019.01.018 pmid: 30827887
[20] Piccolo S, Dupont S . The biology of YAP/TAZ: hippo signaling and beyond. Physiological Reviews, 2014,94(4):1287-1312.
doi: 10.1152/physrev.00005.2014
[21] Mesrouze Y, Bokhovchuk F, Meyerhofer M, et al. Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD. eLife, 2017, 6. . 25068.
doi: 10.7554/eLife.25068 pmid: 28430104
[22] Zhang X, Sun F, Qiao Y , et al. TFCP2 is required for YAP-dependent transcription to stimulate liver malignancy. Cell Reports, 2017,21(5):1227-1239.
doi: 10.1016/j.celrep.2017.10.017 pmid: 29091762
[23] Ou C, Sun Z, Li S , et al. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget, 2017,8(43):75727-75741.
doi: 10.18632/oncotarget.20155 pmid: 29088905
[24] Maugeri-Saccà M, Barba M, Pizzuti L , et al. The hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Reviews in Molecular Medicine, 2015,17:e14.
doi: 10.1017/erm.2015.12 pmid: 26136233
[25] Cao L, Sun P L, Yao M , et al. Expression of YES-associated protein (YAP) and its clinical significance in breast cancer tissues. Human Pathology, 2017,68:166-174.
doi: 10.1016/j.humpath.2017.08.032 pmid: 28899737
[26] Zhang L, Yang S, Chen X , et al. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Molecular and Cellular Biology, 2015,35(8):1350-1362.
doi: 10.1128/MCB.00102-15 pmid: 25645929
[27] Chen H, Chen Q . Expression of netrin-1 by hypoxia contributes to the invasion and migration of prostate carcinoma cells by regulating YAP activity. Experimental Cell Research, 2016,349(2):302-309.
doi: 10.1016/j.yexcr.2016.10.023 pmid: 27815019
[28] Seo W I, Park S, Gwak J , et al. Wnt signaling promotes androgen-independent prostate cancer cell proliferation through up-regulation of the hippo pathway effector YAP. Biochemical and Biophysical Research Communications, 2017,486(4):1034-1039.
doi: 10.1016/j.bbrc.2017.03.158 pmid: 28366633
[29] Hu Y, Shin D J, Pan H , et al. YAP suppresses gluconeogenic gene expression through PGC1α. Hepatology, 2017,66(6):2029-2041.
doi: 10.1002/hep.29373 pmid: 28714135
[30] Yang C S, Stampouloglou E, Kingston N M, et al.Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells.EMBO Reports, 2018, 19(6). [2019-02-25]. . 201643577.
doi: 10.15252/embr.201643577 pmid: 29661856
[31] Zhou X, Wang S, Wang Z , et al. Estrogen regulates hippo signaling via GPER in breast cancer. The Journal of Clinical Investigation, 2015,125(5):2123-2135.
doi: 10.1172/JCI79573 pmid: 25893606
[32] Deng Q, Jiang G, Wu Y , et al. GPER/Hippo-YAP signal is involved in bisphenol S induced migration of triple negative breast cancer (TNBC) cells. Journal of Hazardous Materials, 2018,355:1-9.
doi: 10.1016/j.jhazmat.2018.05.013 pmid: 29758456
[1] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[2] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[3] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[4] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[5] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[6] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[7] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[8] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[9] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[10] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[11] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[12] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.
[13] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[14] 李依蔓,周钦. Herpud1对后肾间充质细胞的作用及其机制的探讨*[J]. 中国生物工程杂志, 2018, 38(3): 9-15.
[15] 杨琼,王灵慧,辜浩,堵晶晶,刘进远,张顺华,朱砺. miR-196a-5p对3T3-L1前脂肪细胞增殖和分化的影响效应 *[J]. 中国生物工程杂志, 2018, 38(11): 9-17.