Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 21-30    DOI: 10.13523/j.cb.1907035
研究报告     
MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *
辜浩1,2,郭鑫宇1,2,堵晶晶1,2,张锫文1,2,王定国3,廖坤4,张顺华1,2,朱砺1,2,**()
1 四川农业大学动物科技学院 成都 611130
2 四川农业大学畜禽遗传资源发掘与创新利用四川省重点实验室
3 成都市动物疫病预防控制中心 成都 610041
4 四川省通江县农业局畜牧站 巴中 636600
The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte
GU Hao1,2,GUO Xin-yu1,2,DU Jing-jing1,2,ZHANG Pei-wen1,2,WANG Ding-guo3,LIAO Kun4,ZHANG Shun-hua1,2,ZHU Li1,2,**()
1 Sichuan Agricultural University College of Animal Science and Technology, Chengdu 611130,China
2 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province,Sichuan Agricultural University, Chengdu 611130,China
3 Chengdu animal disease prevention and control center, Chengdu 610041,China
4 Agricultural Bureau Animal Husbandry Station of Tongjiang, Bazhong 636600,China
 全文: PDF(1654 KB)   HTML
摘要:

目的 探究miR-186-5p对小鼠3T3-L1前脂肪细胞增殖,分化的影响及其潜在的分子机制.方法: qRT-PCR检测miR-186-5p在不同周龄小鼠白色脂肪组织及3T3-L1前脂肪细胞增殖分化过程中的表达变化;通过脂质体将miR-186-5p mimics,inhibitors转染入增殖液或分化液培养的3T3-L1细胞后,利用CCK-8,EdU和qRT-PCR检测3T3-L1前脂肪细胞增殖变化,油红O染色观察其脂滴形态;通过生物信息软件TargetScan和双荧光报告系统分别对miR-186-5p靶基因进行预测和确认.结果: (1)miR-186-5p在1~6周龄小鼠的白色脂肪组织及3T3-L1前脂肪细胞自然分化过程中表达量均逐渐上调.(2)与阴性对照相比,mimics或inhibitors转染分别显著地促进或抑制了miR-186-5p的表达.(3)过表达miR-186-5p后,3T3-L1前脂肪细胞的增殖速率减慢,脂滴增大增多;而抑制miR-186-5p后,3T3-L1前脂肪细胞增殖速率增快,脂滴数量减少,且粒径变小.其中过表达miR-186-5p显著地降低了野生型Wnt5aMapk1 3'-UTR活性,而突变相应的绑定位点可解除该抑制作用.结论: miR-186-5p可抑制3T3-L1前脂肪细胞增殖,且通过直接靶向Wnt5aMapk1以促进其分化为成熟脂肪细胞.

关键词: 3T3-L1前脂肪细胞miR-186-5p分化增殖Wnt5aMapk1    
Abstract:

Objective: To investigate the effect of miR-186-5p on the proliferation and differentiation of mouse 3t3-L1 preadipocytes and its potential molecular mechanism.Methods: qRT-PCR was utilized to measure the expression levels of miR-186-5p in adipose tissue of different-age mice or during the proliferation and differentiation of 3T3-L1 preadipocyte; miR-186-5p mimics or inhibitors were transfected into the 3T3-L1 adipocytes cultured in growth or differentiation medium using lipofectamine; CCK-8,EdU, qRT-PCR or Oil red O staining were performed to determine the effect of miR-186-5p on 3T3-L1 preadipocyte proliferation or differentiation, respectively. Meanwhile, TargetScan and dual-luciferase assay were used to predict and confirm the target genes of miR-186-5p.Results: With aging of mice or 3T3-L1 preadipocyts differentiation into mature adipocyte, the mRNA levels of miR-186-5p were upregulated gradually. When compared to the negative control, notably, mimics or inhibitors transfection could remarkably increase or decrease the expression levels of miR-186-5p, respectively. MiR-186-5p overexpression significantly inhibited the 3T3-L1 preadipocyte proliferation and promoted its differentiation, and in contrast, miR-186-5p inhibition had opposite effect on 3T3-L1 preadipocyte proliferation and differentiation compared to the overexpression group. Further,overexpression of miR-186-5p significantly repressed the relative luciferase activity of wild type-Wnt5a and Mapk1 3'-UTR were found, whereas its inhibition effect was abolished by the mutation of the binding sites.Conclusions: miR-186-5p inhibits the proliferation of 3T3-L1 preadipocyte and promotes its differentiation by targeting Wnt5a and Mapk1.

Key words: 3T3-L1 preadipocyte    miR-186-5p    Differentiation    Proliferation    Wnt5a    Mapk1
收稿日期: 2019-07-17 出版日期: 2020-04-18
ZTFLH:  Q819  
基金资助: * 国家重点研发计划项目(2018YFD0501004);四川省科技支撑项目(2016NZ0050);国家现代农业产业技术体系四川生猪创新团队项目(SCCXTD-008)
通讯作者: 朱砺     E-mail: zhuli7508@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
辜浩
郭鑫宇
堵晶晶
张锫文
王定国
廖坤
张顺华
朱砺

引用本文:

辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.

GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte. China Biotechnology, 2020, 40(3): 21-30.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1907035        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/21

Genes Primer Sequence(5'→3') TM(℃)
PPARγ F:CTCCAAGAATACCAAAGTGCGA
R:GCCTGATGCTTTATCCCCACA
58.3
C/EBPα F:CAAGAACAGCAACGAGTACCG
R:GTCACTGGTCAACTCCAGCAC
58.3
CDK4 F:GTCAGTTTCTAAGCGGCCTG
R:CACGGGTGTTGCGTATGTAG
61.0
Cyclin D1 F:GTTGCTGGAATTTTCGGGGT
R:AGCGTCCCTGTCTTCTTTCA
60.0
Cyclin E F:AGCCTCGGAAAATCAGACCA
R:TCCTGTGCCAAGTAGAACGT
58.3
Cyclin B F:TTGTGTGCCCAAGAAGATGC
R:CTCCGAAGAAAATGCAGGGG
52.0
FABP4 F:TTTCCTTCAAACTGGGCGTG
R:CATTCCACCACCAGCTTGTC
57.9
ELOVL6 F:AAGCACGCTCTATCTCCTGTT
R:CTGCGTTGTATGATCCCATGAA
60.0
aP2 F:CGATCCCAATGAGCAAGTGG
R:TGGGTCAAGCAACTCTGGAT
63.5
LPL F:TGGCGTAGCAGGAAGTCTGA
R:TGCCTCCATTGGGATAAATGTC
60.0
Wnt 5a F: AGGGCAGAAAATGTACACGA
R: GCCCAGAGAAAACTGTAGGTC
57.0
Mapk1 F: GTCGCCATCAAGAAAATCAGC
R: GGAAGGTTTGAGGTCAC
60.0
miR-186-5p CAAAGAAUUCUCCUUUUGGGCU 60.0
U6 F:CTCGCTTCGGCAGCACA
R:AACGCTTCACGAATTTGCGT
61.0
β-actin F:TGGAATCCTGTGGCATC CATGAAAC
R:TAAAACGCAGCTCAG TAACAGTCCG
60.0
表1  引物信息
图1  miR-186-5p在各组织,3T3-L1前脂肪细胞中的表达量
图2  miR-186-5p对3T3-L1前脂肪细胞增殖的影响
图3  miR-186-5p对3T3-L1前脂肪细胞分化的影响
图4  miR-186-5p同源性分析及潜在靶基因预测
[1] Webb E C ,O'Neill H A. The animal fat paradox and meat quality. Meat Science, 2008,80(1):28-36.
[2] Sik C S, Young H J, Jae H I , et al. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in Endocrinology, 2016,7(Suppl 2):30.
[3] Kahn S E, Hull R L, Utzschneider K M . Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006,444(7121):840-846.
[4] Collier A, Ghosh S, Mcglynn B , et al. Prostate cancer, androgen deprivation therapy, obesity, the metabolic syndrome, type 2 diabetes, and cardiovascular disease: a review. Am J Clin Oncol, 2012,35(5):504-509.
[5] Renehan A G, Roberts D L, Dive C . Obesity and cancer: pathophysiological and biological mechanisms. Archives of Physiology & Biochemistry, 2008,114(1):71-83.
[6] Saadeh S . Nonalcoholic Fatty liver disease and obesity. Nutrition in Clinical Practice, 2007,22(1):1-10.
[7] Lucas K, Raikhel A S . Insect microRNAs: biogenesis, expression profiling and biological functions. Insect Biochem Mol Biol, 2013,43(1):24-38.
[8] Diederichs S, Winter J, Jung S , et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009,11(3):228-234.
[9] Gangaraju V K, Lin H . MicroRNAs: key regulators of stem cells. Nature Reviews Molecular Cell Biology, 2009,10(2):116-125.
[10] Manikandan J, Aarthi J J, Kumar S D , et al. Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation, 2008,2(8):330-334.
[11] Du J, Zhang P, Gan M , et al. MicroRNA-204-5p regulates 3T3-L1 preadipocyte proliferation, apoptosis and differentiation. Gene, 2018,668(2):1-7.
[12] 何洪炳, 蔡明成, 梁小虎 , 等. miR-130b靶向PPARγ抑制家兔前体脂肪细胞分化. 畜牧兽医学报, 2017,48(11):2076-2083.
zhang H L, Cai M C, Liang X H , et al. miR-130b targets PPARγ to inhibit the differentiation of preadipocytes in rabbits. Chinese Journal of Animal and Veterinary Sciences, 2017,48(11):2076-2083.
[13] 张丽华, 欧阳丹, 徐立凤 , 等. miR-92a-3p对3T3-L1前体脂肪细胞增殖与分化的影响. 中国兽医科学, 2016, ( 11):1450-1455.
Zhang L H, Ou Y D, Xu L F , et al. Effect of miR-92a-3p on proliferation and differentiation of 3t3-L1 precursors. Chinese Veterinary Science, 2016, ( 11):1450-1455.
[14] Diawara M R, Hue C, Wilder S P , et al. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. Plos One, 2014,9(3):e91375.
[15] Hong L J, Cheng C S, Yue F L , et al. miR-125a inhibits porcine preadipocytes differentiation by targeting ERRα. Molecular & Cellular Biochemistry, 2014,395(1-2):155-165.
[16] Qiu H, Yuan S , Lu X. miR-186 suppressed CYLD expression and promoted cell proliferation in human melanoma. Oncology Letters, 2016,12(4):2301-2306.
[17] Anamaria B . The relationship between platinum drug resistance and epithelial mesenchymal transition. Archives of Toxicology, 2016,91(2):1-15.
[18] Li J L, Xia L M, Zhou Z H , et al. MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Archives of Biochemistry & Biophysics, 2018,640(2):53-60.
[19] Lan T, Yan X, Li Z , et al. Long non-coding RNA PVT1 serves as a competing endogenous RNA for miR-186-5p to promote the tumorigenesis and metastasis of hepatocellular carcinoma. Tumour Biol, 2017,39(6):1-11.
[20] Jin W, Dodson M V, Moore S S , et al. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Molecular Biology, 2010,11(1):21-29.
[21] Ali A S, Ali S, Ahmad A , et al. Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obesity Reviews, 2011,12(12):1050-1062.
[22] Yao Y, Zhang X, Chen H P , et al. MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages. Atherosclerosis, 2016,250(Complete) : 122-132.
[23] Kras K M, Hausman D B, Hausman G J , et al. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obesity research, 1999,7(5):491-497.
[24] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔCT method . Methods, 2001,25(4):402-408.
[25] Yi C, Xie W D, Li F , et al. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. Febs Letters, 2011,585(20):3303-3309.
[26] Chen F F, Yan X, Ying P , et al. miR-425-5p inhibits differentiation and proliferation in porcine intramuscular preadipocytes. International Journal of Molecular Sciences, 2017,18(10):2101.
[27] Wang Q, Li Y C, Wang J , et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA, 2008,105(8):2889-2894.
[28] Zou B, Ge Z, Zhu W , et al. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis. Eur J Nutr, 2015,54(8):1333-1343.
[29] Chen L, Dai Y M, Ji C B , et al. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Molecular and Cellular Endocrinology, 2014,393(1-2):65-74.
[30] Chen F, Zhou C, Lu Y X , et al. Expression of hsa-miR-186 and its role in human colon carcinoma cells. Journal of Southern Medical University, 2013,33(5):654-660.
[31] Cai J, Wu J, Zhang H , et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Research, 2013,73(2):756-766.
[32] Wang H, Shen Q, Zhang X , et al. The long non-coding RNA XIST controls non-small cell lung cancer proliferation and invasion by modulating miR-186-5p. Cellular Physiology & Biochemistry International Journal of Experimental Cellular Physiology Biochemistry & Pharmacology, 2017,41(6):2221-2229.
[33] Cornelius P ,MacDougald O A, Lane M D. Regulation of adipocyte development. Annual Review of Nutrition, 1994,14(1):99-129.
[34] Stacey D W . Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Current Opinion in Cell Biology, 2003,15(2):158-163.
[35] Kozar K, Sicinski P . Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes. Cell Cycle, 2005,4(3):388-391.
[36] Pu Y, Veiga-Lopez A . PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cellular & Molecular Biology Letters, 2017,22(1):6.
[37] Choi S K, Park S, Jang S , et al. Cascade regulation of PPARγ 2 and C/EBPα signaling pathways by celastrol impairs adipocyte differentiation and stimulates lipolysis in 3T3-L1 adipocytes. Metabolism Clinical & Experimental, 2016,65(5):646-654.
[38] Bartel D P . MicroRNAs : genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
[39] Shukla G C, Singh J, Barik S . MicroRNAs: processing, maturation, target recognition and regulatory functions. Molecular & Cellular Pharmacology, 2011,3(3):83-92.
[40] Rauner M, Stein N, Winzer M , et al. WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production. Journal of Bone & Mineral Research, 2012,27(3):575-585.
[41] Fuster J J, Zuriaga M A, Ngo T M , et al. Noncanonical wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Atherosclerosis, 2015,64(4):1235-1248.
[42] Victoria C, Javier G A, Amaia R , et al. Activation of noncanonical Wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. Journal of Clinical Endocrinology & Metabolism, 2014,99(8):1407-1417.
[43] Matthias L . Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. Journal of Biological Chemistry, 2010,285(2):6170-6178.
[44] Tang Q, Chen C, Zhang Y , et al. Wnt5a regulates the cell proliferation and adipogenesis via MAPK‐independent pathway in early stage of obesity. Cell biology international, 2018,42(1):63-74.
[45] Bost F, Aouadi M, Caron L , et al. The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005,87(1):51-56.
[46] Adams M, Montague C T, Prins J B , et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. The Journal of Clinical Investigation, 1997,100(12):3149-3153.
[47] Tanabe Y, Koga M, Saito M , et al. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2. Journal of Cell Science, 2004,117(16):3605-3614.
[48] Huang N N, Wang J, Xie W D , et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochemical and Biophysical Research Communications, 2015,457(1):37-42.
[1] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[2] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[3] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[4] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[5] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[6] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[7] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[8] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[9] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[10] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[11] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[12] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[13] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[14] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[15] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.