Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (7): 1-9    DOI: 10.13523/j.cb.2103067
研究报告     
RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用
李世荣1,陈阳琴1,张春盼1,2,齐文杰1,*()
1 首都医科大学附属北京友谊医院 北京 100050
2 国家消化系统疾病临床医学研究中心 北京 100050
RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7
LI Shi-rong1,CHEN Yang-qin1,ZHANG Chun-pan1,2,QI Wen-jie1,*()
1 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
2 National Clinical Research Center for Digestive Disease, Beijing 100050, China
 全文: PDF(2074 KB)   HTML
摘要:

目的: 研究RS4651对小鼠肝细胞AML12的EMT、细胞增殖以及迁移能力的影响和作用机制。方法: 以不同浓度的RS4651干预小鼠AML12细胞,通过Western blot和RT-PCR法检测RS4651各浓度组及空白对照组细胞EMT指标E-cadherin、N-cadherin、Vimentin的表达水平。RNA-sequencing确定RS4651的作用通路及互作网络的关键性节点基因。应用SMAD7-siRNA构建SMAD7敲低的AML12细胞模型,细胞分为对照组、RS(60 μmol/L)组、SMAD7-siRNA组以及SMAD7-siRNA+RS(60 μmol/L)组,应用Western blot和RT-PCR法分别检测各组细胞EMT指标。进一步应用细胞增殖MTS法和Transwell小室迁移法检测各组细胞的增殖和迁移能力,比较各组间差异。结果: RS4651呈浓度依赖性抑制AML12细胞EMT,TGF-β1信号通路中的SMAD7是RS4651发挥作用的关键性节点。敲低SMAD7后,RS4651对AML12细胞EMT、增殖和迁移的抑制作用减弱。结论: RS4651可以通过上调SMAD7抑制小鼠肝细胞EMT、增殖和迁移。

关键词: RS4651SMAD7EMT增殖迁移    
Abstract:

Objective: To investigate the effect of RS4651 on the EMT of hepatic cell AML12 in mice and the potential mechanism.Methods: AML12 cells were treated with RS4651 at different concentrations. Western blot and RT-PCR was used to detect the expression of E-cadherin, N-cadherin and Vimentin of RS4651 treatment groups and control group to investigate the effect of RS4651 on EMT of AML12 cells and SMAD7-Knockdown AML12 cells. RNA-sequencing identified the key node genes in the signaling pathway and the interaction network of RS4651. The proliferation and migratory effects of RS4651 treatment on AML12 cells with or without silencing by SMAD7-siRNA.Results: RS4651 could significantly upregulate the expression of E-cadherin and downregulated the expression of N-cadherin and Vimentin in a concentration-dependent manner. RNA-sequencing data showed that the target gene was SMAD7 in TGF-β1 signalling pathway. The expression of E-cadherin was relatively decreased in the SMAD7-siRNA+RS (60 μmol/L) group compared with the RS (60 μmol/L) group, while the expression of N-cadherin and Vimentin were relatively increased, and the proliferation and migration of AML12 cells were also increased.Conclusion: RS4651 can inhibit EMT, proliferation and migration of mice hepatocyte AML12 cells through SMAD7.

Key words: RS4651    SMAD7    EMT    Proliferation    Migration
收稿日期: 2021-03-26 出版日期: 2021-08-03
ZTFLH:  Q819  
通讯作者: 齐文杰     E-mail: qwj02@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李世荣
陈阳琴
张春盼
齐文杰

引用本文:

李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.

LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7. China Biotechnology, 2021, 41(7): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103067        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I7/1

Gene Forward primer Reverse primer
E-cadherin CGAGAGCTACACGTTCACGG GGGTGTCGAGGGAAAAATAGG
N-cadherin TGCGGTACAGTGTAACTGGG GAAACCGGGCTATCTGCTCG
Vimentin CGTCCACACGCACCTACAG GGGGGATGAGGAATAGAGGCT
GAPDH TGGCCTTCCGTGTTCCTAC GAGTTGCTGTTGAAGTCGCA
表1  引物序列
图1  RS4651呈浓度依赖性抑制小鼠AML12细胞的EMT
图2  转录组测序证实RS4651抑制AML12细胞EMT的作用通路和靶点
图3  RS4651对SMAD7抑制AML12细胞EMT作用
图4  RS4651抑制AML12细胞的增殖能力
图5  RS4651通过SMAD7抑制AML12细胞的迁移能力
[1] 董经宇, 李庆昌. EMT与胚胎发育及肿瘤侵袭转移. 现代肿瘤医学, 2010, 18(2):396-398.
Dong J Y, Li Q C. Roles of EMT in embryonic development and tumor metastasis. Journal of Modern Oncology, 2010, 18(2):396-398.
[2] 潘琦璐, 马礼兵. 上皮-间质转化在恶性肿瘤发病和侵袭转移中的作用研究进展. 实用医学杂志, 2020, 36(17):2443-2447.
Pan Q L, Ma L B. Research progress based on the role of epithelial-mesenchymal transition in the pathogenesis and invasion of malignant tumors. The Journal of Practical Medicine, 2020, 36(17):2443-2447.
[3] 胡彦建, 韩明子, 胡彦华. 上皮间质转化在原发性肝癌侵袭、转移中的作用. 胃肠病学和肝病学杂志, 2014, 23(1):117-120.
Hu Y J, Han M Z, Hu Y H. The role of epithelial-mesenchymal transition in the invasion and metastasis of pri-mary liver cancer. Chinese Journal of Gastroenterology and Hepatology, 2014, 23(1):117-120.
[4] Gheldof A, Berx G. Cadherins and epithelial-to-mesenchymal transition. Progress in Molecular Biology and Translational Science, 2013, 116:317-336.
[5] 王靖思, 刘玉琴, 陈兰羽, 等. 上皮-间质转化与肝纤维化的研究进展. 世界华人消化杂志, 2014, 22(20):2857-2862.
doi: 10.11569/wcjd.v22.i20.2857
Wang J S, Liu Y Q, Chen L Y, et al. Epithelial-mesenchymal transition and hepatic fibrosis. World Chinese Journal of Digestology, 2014, 22(20):2857-2862.
doi: 10.11569/wcjd.v22.i20.2857
[6] 范美玲, 应苗法, 赵蕊, 等. TGF-β信号通路在纤维化疾病中的作用研究进展. 解放军医学杂志, 2020, 45(11):1171-1177.
Fan M L, Ying M F, Zhao R, et al. Research progress on the role of TGF-β signaling pathway in fibrotic diseases. Medical Journal of Chinese People’s Liberation Army, 2020, 45(11):1171-1177.
[7] Manvar D, Pelliccia S, Regina G L, et al. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. European Journal of Medicinal Chemistry, 2015, 90:497-506.
doi: 10.1016/j.ejmech.2014.11.042
[8] 陈永平. 浅析肝纤维化治疗现状. 现代实用医学, 2018, 30(3):281-283.
Chen Y P. Analysis of the current situation of liver fibrosis treatment. Modern Practical Medicine, 2018, 30(3):281-283.
[9] Kang Y B, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004, 118(3):277-279.
doi: 10.1016/j.cell.2004.07.011
[10] Corso G, Figueiredo J, de Angelis S P, et al. E-cadherin deregulation in breast cancer. Journal of Cellular and Molecular Medicine, 2020, 24(11):5930-5936.
doi: 10.1111/jcmm.v24.11
[11] Jang N R, Choi J H, Gu M J. Aberrant expression of E-cadherin, N-cadherin, and P-cadherin in clear cell renal cell carcinoma: association with adverse clinicopathologic factors and poor prognosis. Applied Immunohistochemistry & Molecular Morphology, 2021, 29(3):223-230.
[12] Hassan M, Aboushousha T, El-Ahwany E, et al. Impact of E-cadherin and its transcription regulators on assessing epithelial-mesenchymal transition in chronic HCV infection. Minerva Gastroenterol Dietol, 2021, 67(2):175-182.
[13] Chapman H A. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annual Review of Physiology, 2011, 73:413-435.
doi: 10.1146/annurev-physiol-012110-142225 pmid: 21054168
[14] Park S J, Choi Y S, Lee S, et al. BIX02189 inhibits TGF-beta1-induced lung cancer cell metastasis by directly targeting TGF-beta type I receptor. Cancer Letters, 2016, 381(2):314-322.
doi: 10.1016/j.canlet.2016.08.010
[15] 王靖思, 王逊, 刘玉琴, 等. 桃红芪术软肝煎基于TGF-β/SMAD信号通路逆转上皮-间质转化抗肝纤维化作用. 世界华人消化杂志, 2015, 23(13):2036-2049.
doi: 10.11569/wcjd.v23.i13.2036
Wang J S, Wang X, Liu Y Q, et al. Taohong Qizhu Ruangan Jian reverses epithelialmesenchymal transition via transforming growth factor beta/SMAD signaling pathway. World Chinese Journal of Digestology, 2015, 23(13):2036-2049.
doi: 10.11569/wcjd.v23.i13.2036
[16] Wendt M K, Allington T M, Schiemann W P. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncology (London, England), 2009, 5(8):1145-1168.
doi: 10.2217/fon.09.90
[17] Thiery J P, Acloque H, Huang R Y, et al. Epithelial-mesenchymal transitions in debelopment and disease. Cell, 2009, 139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376
[18] Zhao X Y, Wu X, Qian M Q, et al. Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells. Cancer Letters, 2018, 428:34-44.
doi: 10.1016/j.canlet.2018.04.026
[19] 汤志杰, 张茂娜, 陈莉. 肝癌和肝纤维化发生EMT及相关信号通路的分子机制. 实用癌症杂志, 2014, 29(1):113-116.
Tang Z J, Zhang M N, Chen L. Molecular mechanism of EMT and related signal pathways in liver cancer and liver fibrosis. The Practical Journal of Cancer, 2014, 29(1):113-116.
[20] Feng F F, Li N N, Cheng P, et al. Tanshinone IIA attenuatessilica-induced pulmonary fibrosis via inhibition of TGF-beta1-SMAD signaling pathway. Biomedicine & Pharmacotherapy, 2020, 121:109586.
doi: 10.1016/j.biopha.2019.109586
[21] Higgins, Tang Y, Higgins C E, et al. TGF-beta1/p53signaling in renal fibrogenesis. Cellular Signalling, 2018, 43:1-10.
doi: 10.1016/j.cellsig.2017.11.005
[22] Chen L, Yang T, Lu D W, et al. Central role of dysregulation of TGF-beta/SMAD in CKD progression and potential targets of its treatment. Biomedicine & Pharmacotherapy, 2018, 101:670-681.
doi: 10.1016/j.biopha.2018.02.090
[23] Li N N, Feng F F, Wu K, et al. Inhibitory effects of astragaloside IV onsilica-induced pulmonary fibrosis via inactivating TGF-beta1/SMAD3signaling. Biomedicine & Pharmacotherapy, 2019, 119:109387.
doi: 10.1016/j.biopha.2019.109387
[24] Huse K, Bakkebø M, Wälchli S, et al. Role of SMAD proteins in resistance to BMP-induced growth inhibition in B-cell lymphoma. PLoS One, 2012, 7(10):e46117.
doi: 10.1371/journal.pone.0046117
[25] 李戎, 常全颖, 陈罗西, 等. EMT全视角环境中艾灸加强化纤Ⅵ号方药液穴位皮肤吸收法调控肺纤维化大鼠内源性SMAD7表达以阻抑其TGF-β信号转导通路的实验研究. 四川中医, 2020, 38(9):41-46.
Li R, Chang Q Y, Chen L X, et al. Experimental study on moxibustion strengthening the acupoint skin absorption of huaxian No.6 prescription in EMT environment to regulate the expression of endogenous SMAD7 in pulmonary fibrosis rats to inhibit the TGF-β signal transduction pathway. Journal of Sichuan of Traditional Chinese Medicine, 2020, 38(9):41-46.
[26] 周小凡, 赵亚南, 肖敏勤, 等. 调控SMAD7基因对瘢痕疙瘩角质形成细胞上皮-间质转化的影响. 四川大学学报(医学版), 2020, 51(6):790-796.
Zhou X F, Zhao Y N, Xiao M Q, et al. Effects of regulating SMAD7 gene on epithelial-mesenchymal transition in keloid keratinocyte. Journal of Sichuan University (Medical Science Edition), 2020, 51(6):790-796.
[27] 李浩然, 李寿宁, 刘军, 等. 芹菜素通过上调SMAD-7抑制肺上皮细胞系A549细胞上皮间质转换. 临床和实验医学杂志, 2018, 17(1):44-46.
Li H R, Li S N, Liu J, et al. The inhibitory effect of apigenin on the epithelial-mesenchymal transition in the pulmonary epithelial cell line A549 by up-regulation of the SMAD-7. Journal of Clinical and Experimental Medicine, 2018, 17(1):44-46.
[28] 张彦璐, 陈影, 应国清. 上皮间质转化在肿瘤侵袭转移中的研究进展. 浙江化工, 2019, 50(7):11-15.
Zhang Y L, Chen Y, Ying G Q. The research progress of epithelial-mesenchymal transition in tumor invasion and metastasis. Zhejiang Chemical Industry, 2019, 50(7):11-15.
[29] 周昊, 封冰, 王锐. MicroRNA调控肝细胞癌EMT和细胞外基质重塑的研究进展. 东南国防医药, 2020, 22(3):277-282.
Zhou H, Feng B, Wang R. The research progress of microRNA to regulate EMT and extracellular matrix remodeling in hepatocellular carcinoma. Military Medical Journal of Southeast China, 2020, 22(3):277-282.
[30] 苏丹, 何祖坤, 白松. 结直肠癌EMT相关LncRNA的研究进展. 实用癌症杂志, 2019, 34(11):1911-1914.
Su D, He Z K, Bai S. Research progress on colorectal cancer EMT related to LncRNA. The Practical Journal of Cancer, 2019, 34(11):1911-1914.
[1] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[2] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[3] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[4] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[5] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[6] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[7] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[8] 刘善辉,何魏,马文斐,李兰兰,卢建中,陶燕,张静,付生军. KLF8表达修饰及致瘤机制研究进展[J]. 中国生物工程杂志, 2019, 39(8): 80-85.
[9] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[10] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[11] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[12] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.
[13] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[14] 李依蔓,周钦. Herpud1对后肾间充质细胞的作用及其机制的探讨*[J]. 中国生物工程杂志, 2018, 38(3): 9-15.
[15] 杨琼,王灵慧,辜浩,堵晶晶,刘进远,张顺华,朱砺. miR-196a-5p对3T3-L1前脂肪细胞增殖和分化的影响效应 *[J]. 中国生物工程杂志, 2018, 38(11): 9-17.