Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 111-119    DOI: 10.13523/j.cb.2110017
行业分析     
干细胞与再生医学技术发展态势研究
郑颖1,2,*(),邓诗碧1,陈方1,2
1 中国科学院成都文献情报中心 成都 610299
2 中国科学院大学经济与管理学院图书情报与档案管理系 北京 100190
The Development Trend of Stem Cell Technology and Regenerative Medicine
ZHENG Ying1,2,*(),DENG Shi-bi1,CHEN Fang1,2
1 Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610299, China
2 Department of Library,Information and Archives Management, School of Economics and Management,University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(848 KB)   HTML
摘要:

20世纪以来,干细胞与再生医学技术一直是国际生物医学领域的热点前沿之一,它为保障人类生命健康、改善人类生存质量和延长人类寿命发挥不可替代的巨大作用。因此,美国、欧洲国家、日本和中国等科技大国均将该领域纳入了国家科研与产业发展的重点战略中,并通过专项扶持、政策补贴、立法保障等方式激励该领域的创新发展。通过对近年来国际科技战略和科技研发态势的梳理分析,发现该领域的国际战略布局规律,揭示我国在该领域的领先优势与弱点,为我国未来干细胞与再生医学技术发展提出相关参考建议。

关键词: 干细胞再生医学科技战略科技发展态势    
Abstract:

Since the 20th century, the field of stem cells and regenerative medicine has always been one of the hot frontiers in the international biomedical field. It plays an irreplaceable role in safeguarding human life and health, improving the quality of human life, and extending human life. Therefore, major technological countries such as the United States, European countries, Japan, and China have included the field in their national strategies for scientific research and industrial development, and have encouraged innovation and development in this field through special support, policy subsidies, and legislative guarantees. This article analyzes the international technology development strategy and research and development trends of stem cells and regenerative medicine in recent years, discovers the international strategic layout rules, reveals leading strengths and weaknesses of China, and try to provide relevant references for the development of China in the field.

Key words: Stem cells    Regenerative medicine    Science and technology strategy    Science and technology development trend
收稿日期: 2021-10-13 出版日期: 2022-05-05
ZTFLH:  Q819  
通讯作者: 郑颖     E-mail: zhengy@clas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑颖
邓诗碧
陈方

引用本文:

郑颖,邓诗碧,陈方. 干细胞与再生医学技术发展态势研究[J]. 中国生物工程杂志, 2022, 42(4): 111-119.

ZHENG Ying,DENG Shi-bi,CHEN Fang. The Development Trend of Stem Cell Technology and Regenerative Medicine. China Biotechnology, 2022, 42(4): 111-119.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2110017        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/111

[1] Technavio. Cell therapy market by type, application, and geography - forecast and analysis 2022-2026.[2020-09-02]. https://www.technavio.com/report/global-cell-therapy-market.
[2] ReportLink. Global stem cells industry.[2020-02-04]. https://www.reportlinker.com/p02043289/Global-Mesenchymal-Stem-Cells-Industry.html?utm_source=GNW#backAction=1.
[3] California’s Stem Cell Agency. CIRM 2019-2020 AR FINAL.[2020-08-24]. https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CIRM%202019-2020%20AR%20FINAL_082420.pdf.
[4] Tosic J, Kim G J, Pavlovic M, et al. Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nature Cell Biology, 2019, 21:1518-1531.
doi: 10.1038/s41556-019-0423-1
[5] 程唯珈. “逆转”细胞命运.[2018-07-30]. http://news.sciencenet.cn/htmlnews/2018/7/416068.shtm.
Cheng W J. “Reverse” cell fate.[2018-07-30]. http://news.sciencenet.cn/htmlnews/2018/7/416068.shtm.
[6] Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution. Nature, 2020, 582(7813):1-6.
[7] William G, Itys C. Mengjun W, et al. A functional link between nuclear RNA decay and transcriptional control mediated by the polycomb repressive complex 2. Cell Reports, 2019, 29(7): 1811e6.
[8] Yin J, Leavenworth J W, Li Y, et al. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(52): 15988-15993.
[9] Tran V, Lim C, Xie J, et al. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science, 2012, 338(6107): 679-682.
doi: 10.1126/science.1226028
[10] Ceto S, Sekiguchi K J, Takashima Y, et al. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell, 2020, 27(3): 430-440.e5.
doi: 10.1016/j.stem.2020.07.007
[11] Chen Y J, Cao J Y, Xiong M, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell, 2015, 17(2): 233-244.
doi: 10.1016/j.stem.2015.06.001
[12] Wang T S, Pine A R, Kotini A G, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell, 2021, 28(6): 1074-1089.e7.
doi: 10.1016/j.stem.2021.01.011
[13] Ji S, Zhu L, Gao Y, et al. Baf60b-mediated ATM-p 53 activation blocks cell identity conversion by sensing chromatin opening. Cell Research, 2017, 27(5): 642-656.
doi: 10.1038/cr.2017.36
[14] Choi S, Zhang B, Ma S, et al. Corticosterone inhibits GAS 6 to govern hair follicle stem-cell quiescence. Nature, 2021, 592(7854): 428-432.
doi: 10.1038/s41586-021-03417-2
[15] Xie Y H, Chen D M, Jiang K J, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell, 2022, 29(1): 70-85.e6.
doi: 10.1016/j.stem.2021.09.009
[16] Quist S R, Quist J. Keep quiet-how stress regulates hair follicle stem cells. Signal Transduction and Targeted Therapy, 2021, 6(1): 1-2.
doi: 10.1038/s41392-020-00451-w
[17] Gonzales K A U, Polak L, Matos I, et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science, 2021, 374(6571): eabh2444.
doi: 10.1126/science.abh2444
[18] Zhao X, Garcia J Q, Tong K, et al. Polarized endosome dynamics engage cytoplasmic Par-3 that recruits dynein during asymmetric cell division. Science Advances, 2021, 7(24): eabg1244.
doi: 10.1126/sciadv.abg1244
[19] Wang L, Li J, Zhou H, et al. A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability. Nature communications, 2021, 12(1): 1-15.
doi: 10.1038/s41467-020-20314-w
[20] Nashchekin D, Busby L, Jakobs M, et al. Symmetry breaking in the female germline cyst. Science, 2021, 374(6569): 874-879.
doi: 10.1126/science.abj3125 pmid: 34762476
[21] Zhao J, Lu P, Wan C, et al. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nature Communications, 2021, 12(1): 6839.
doi: 10.1038/s41467-021-27172-0
[22] Regev A, Teichmann S A, Lander E S, et al. The human cell atlas. eLife, 2017, 6: e27041.
doi: 10.7554/eLife.27041
[23] Quinn J J, Jones M G, Okimoto R A, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 2021, 371(6532): eabc1944.
doi: 10.1126/science.abc1944
[24] Chow K H K, Budde M W, Granados A A, et al. Imaging cell lineage with a synthetic digital recording system. Science, 2021, 372(6538): eabb3099.
doi: 10.1126/science.abb3099
[25] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024
[26] de Soysa T Y, Ranade S S, Okawa S, et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature, 2019, 572:120-124.
doi: 10.1038/s41586-019-1414-x
[27] 王欢. 日本京都大学利用人体诱导多能干细胞治疗帕金森.[2018-11-15]. https://tech.huanqiu.com/article/9CaKrnKeRzv.
Wang H. Treatment of Parkinson’s disease with human induced pluripotent stem cells at Kyoto University, Japan.[2018-11-15]. https://tech.huanqiu.com/article/9CaKrnKeRzv.
[28] Hou C Y. Clinical trial underway for a natural killer cell therapy.[2019-05-07]. https://www.the-scientist.com/news-opinion/clinical-trial-underway-for-a-natural-killer-cell-therapy-65845.
[29] Kasper D M, Hintzen J, Wu Y Y, et al. The N-glycome regulates the endothelial-to-hematopoietic transition. Science (New York), 2020, 370(6521): 1186-1191.
[30] Colomb F, Giron L B, Kuri-Cervantes L, et al. Sialyl-LewisX glycoantigen is enriched on cells with persistent HIV transcription during therapy. Cell Reports, 2020, 32(5): 107991.
doi: 10.1016/j.celrep.2020.107991
[31] Bao E L, Nandakumar S K, Liao X, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature, 2020, 586(7831):769-775.
doi: 10.1038/s41586-020-2786-7
[32] Ivanovs A, Rybtsov S, Anderson R A, et al. Vast self-renewal potential of human AGM region HSCs dramatically declines in the umbilical cord blood. Stem Cell Reports, 2020, 15(4): 811-816.
doi: 10.1016/j.stemcr.2020.08.008
[33] Min H, Xu L, Parrott R, et al. Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies. Stem Cells, 2020, 39(1): 115-128.
doi: 10.1002/stem.3292
[34] Shen B, Tasdogan A, Ubellacker J M, et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 591, 438-444.
doi: 10.1038/s41586-021-03298-5
[35] Heyde A, Rohde D, McAlpine C S, et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell, 2021, 184(5): 1348-1361.
doi: 10.1016/j.cell.2021.01.049
[36] Yu L, Wei Y, Duan J, et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature, 2021, 591 (7851): 620-626.
doi: 10.1038/s41586-021-03356-y
[37] Manian K V, Galloway C A, Dalvi S, et al. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell, 2021, 28(5): 978.
doi: 10.1016/j.stem.2021.03.024
[38] L?hmussaar K, Oka R, Espejo Valle-Inclan J, et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell, 2021, 28(8): 1380-1396.
doi: 10.1016/j.stem.2021.03.012
[39] Huang L, Desai R, Conrad D N, et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell, 2021, 28(6): 1090-1104.
doi: 10.1016/j.stem.2021.03.022
[40] Xu P F, Borges R M, Fillatre J, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nature Communications, 2021, 12: 3277.
doi: 10.1038/s41467-021-23653-4
[41] Hofbauer P, Jahnel S M, Papai N, et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell, 2021, 184(12): 3299-3317.e22.
doi: 10.1016/j.cell.2021.04.034 pmid: 34019794
[42] Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10): 1740-1757.e8.
doi: 10.1016/j.stem.2021.07.010 pmid: 34407456
[43] Yoshino T, Suzuki T, Nagamatsu G, et al. Generation of ovarian follicles from mouse pluripotent stem cells. Science, 2021, 373(6552): eabe0237.
doi: 10.1126/science.abe0237
[44] Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(11): 1900344.
[45] Wang D S, Wang J Q, Bai L Y, et al. Long-term expansion of pancreatic islet organoids from resident procr+ progenitors. Cell, 2020, 180(6): 1198-1211.e19.
doi: 10.1016/j.cell.2020.02.048
[46] 综合开发研究院. 国际再生医学产业现状及展望.[2020-02-19]. https://www.thepaper.cn/newsDetail_forward_5566835.
Comprehensive Development Research Institute. Current situation and Prospect of international regenerative medicine industry.[2020-02-19]. https://www.thepaper.cn/newsDetail_forward_5566835.
[47] Han X P, Wang R Y, Zhou Y C, et al. Mapping the mouse cell atlas by microwell-seq. Cell, 2018, 172(5): 1091-1107.e17.
doi: 10.1016/j.cell.2018.02.001
[48] Peng G, Suo S, Cui G, et al. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature, 2019, 572 (7770): 528-532.
doi: 10.1038/s41586-019-1469-8
[49] Zhong S, Zhang S, Fan X, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature, 2018, 555(7697):524.
doi: 10.1038/nature25980
[50] Zhao H, Huang X, Liu Z, et al. Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas. Nature Metabolism, 2021, 3 (3): 352-365.
doi: 10.1038/s42255-021-00364-0 pmid: 33723463
[51] Cui T T, Jiang L Y, Li T D, et al. Derivation of mouse haploid trophoblast stem cells. Cell Reports, 2019, 26(2): 407-414.e5.
doi: 10.1016/j.celrep.2018.12.067
[52] Li W P, Yang L G, He Q, et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell, 2019, 25(1): 54-68.e5.
doi: 10.1016/j.stem.2019.06.008
[53] Zhang K, Zhang L D, Liu W M, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell, 2018, 23(6): 806-819.e4.
doi: S1934-5909(18)30499-5 pmid: 30416071
[54] Deng X, Zhang X, Li W P, et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell, 2018, 23(1): 114-122.e3.
doi: 10.1016/j.stem.2018.05.022
[55] Hu W X, Qiu B L, Guan W Q, et al. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015, 17(2): 204-212.
doi: 10.1016/j.stem.2015.07.006
[56] Zhao T, Fu Y, Zhu J L, et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell, 2018, 23(1): 31-45.e7.
doi: 10.1016/j.stem.2018.05.025
[57] Wang L, Zhang P P, Wei Y L, et al. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood, 2011, 118(15): 4102-4110.
doi: 10.1182/blood-2011-05-353235 pmid: 21849483
[58] Tao T T, Wang Y Q, Chen W W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab on a Chip, 2019, 19(6): 948-958.
doi: 10.1039/C8LC01298A
[59] Chen J, Liu H, Liu J, et al. H3K 9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 2013, 45(1):34-42.
doi: 10.1038/ng.2491
[60] Cao S T, Yu S Y, Li D W, et al. Chromatin accessibility dynamics during chemical induction of pluripotency. Cell Stem Cell, 2018, 22(4): 529-542.e5.
doi: 10.1016/j.stem.2018.03.005
[61] Zhao J, Wang M, Chang L, et al. RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nature Cell Biology, 2020, 22(4):439-452.
doi: 10.1038/s41556-020-0484-1
[62] 郭琳, 陈捷凯, 裴端卿. 维生素C与表观遗传调控. 科学通报, 2014, 59(S2): 2833-2839.
Guo L, Chen J K, Pei D Q. Vitamin C and epigenetic regulation. Chinese Science Bulletin, 2014, 59(S2): 2833-2839.
[63] Zhu H F, Xie W X, Xu D C, et al. DNA demethylase ROS 1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. PNAS, 2018, 115(42): E9962-E9970.
[64] Liu X, Sun H, Qi J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nature Cell Biology, 2013, 15(7):829-838.
doi: 10.1038/ncb2765
[65] Xu D C, Jin T J, Zhu H, et al. TBK 1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell, 2018, 174(6): 1477-1491.e19.
doi: 10.1016/j.cell.2018.07.041
[66] Yang H, Wang G, Sun H, et al. Species-dependent neuropathology in transgenic SOD1 pigs. Cell Research, 2014, 24(4):464-481.
doi: 10.1038/cr.2014.25
[67] Jiang Y Z, Cai Y Z, Zhang W, et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Translational Medicine, 2016, 5(6): 733-744.
doi: 10.5966/sctm.2015-0192
[68] Xu L, Wang J, Liu Y L, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New England Journal of Medicine, 2019, 381(13): 1240-1247.
doi: 10.1056/NEJMoa1817426
[1] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[4] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[5] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[6] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[7] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[8] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[9] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[10] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[11] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[12] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[15] 范月蕾,陆娇,陈大明,毛开云. 干细胞专利价值评估与转移转化对策研究 *[J]. 中国生物工程杂志, 2019, 39(1): 99-106.