Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 59-69    DOI: 10.13523/j.cb.2001061
综述     
干细胞改善糖尿病的分子机制及临床研究进展
陈飞,王晓冰,徐增辉(),钱其军()
上海细胞治疗工程技术研究中心 上海 201800
Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus
CHEN Fei,WANG Xiao-bing,XU Zeng-hui(),QIAN Qi-jun()
Shanghai Cell Therapy Engineering Technology Research Center, Shanghai 200000, China
 全文: PDF(834 KB)   HTML
摘要:

糖尿病是各种因素导致的高血糖慢性代谢疾病,已发展成为流行疾病之一。化学抗糖药虽能控制血糖水平,延缓病程进展,但需长期服用;胰岛移植能从根本上治愈糖尿病,但胰岛来源不足,且需终生应用免疫抑制剂,故并没有得到广泛应用;干细胞是一类能够自我复制的细胞,具有多向分化潜能和旁分泌特性,近年来的研究证明,干细胞在糖尿病治疗方面有着积极的效果,被认为是有效治疗糖尿病的理想细胞类型。因此,就干细胞治疗糖尿病的分子机制和临床研究现状进行简要阐述。

关键词: 糖尿病干细胞干细胞分化旁分泌    
Abstract:

Diabetes is a chronic metabolic disease of hyperglycemia caused by various factors, which has developed into one of the epidemic diseases. Chemical anti-diabetic drugs can control the blood glucose and delay the progress of the disease, which needs to be taken for a long time to be effectively controlled. The current gold standard therapy for pancreas transplantation, but it has not been widely used because of the shortage of pancreas and the need for long-term use of immunosuppressive drugs. Mesenchymal stem cells (MSCs) are a kind of self-proliferation cells with the potential of multi-directional differentiation and paracrine characteristics. Recent studies have proved that MSCs have positive effects in the treatment of diabetes, and are considered as the ideal cell type for treatment of diabetes. Therefore, this review The molecular mechanisms and clinical research of MSCs for diabetes mellitus were briefly described.

Key words: Diabetes mellitus    Mesenchymal stem cells    Mesenchymal stem cells differentiation    Paracrine
收稿日期: 2020-01-20 出版日期: 2020-08-13
ZTFLH:  Q813  
通讯作者: 徐增辉,钱其军     E-mail: zenghuixu@163.com;qianqj@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈飞
王晓冰
徐增辉
钱其军

引用本文:

陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.

CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. China Biotechnology, 2020, 40(7): 59-69.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001061        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/59

图1  2017年我国糖尿病患糖尿病、IGT的比例及人数统计,以及2045年患糖尿病、IGT的比例及人数的预测
图2  干细胞功能简介
细胞来源 诱导程序 基础培养基 诱导剂 培养天数 参考文献
第一步 无血清H-DMEM 0.5mmol/L β-巯基乙醇 2天 [20-21]
BM-MSCs 第二步 无血清H-DMEM 1%非必需氨基酸、20ng/ml β-FGF、2% B27,2mmol/L L-谷氨酰胺 8天
第三步 无血清H-DMEM 10ng/ml β-FGF、10ng/ml 激活素 A、2%B27、10mmol/L烟酰胺 8天
UC-MSCs 第一步 10%FBS H-DMEM 6mmol/L维甲酸 2天 [22]
第二步 10%FBS L-DMEM 10mmol/L烟酰胺、20ng/ml表皮生长因子 6天
第三步 10%FBS L-DMEM 10nmol/L 肠促胰岛素类似物-4 6天
ADSCs 一步法诱导 DMEM/F12 10mmol/L烟酰胺、2nmol/L 激活素-A、10nmol/L 肠促胰岛素类似物-4、100pmol/L HGF、10nmol/L五肽促胃酸激素、B27血清替代物、N-2添加剂 3天 [26-27]
表1  间充质干细胞体外诱导为产胰岛素细胞的过程
序列 细胞来源 回输细胞数量 受试者数 注射方式 随访时间 治疗效果 参考文献
1 HSC 11.0×106cells /kg 28 静脉 36个月 AUCc-pep↑, GAD↓, HbA1C↓,胰岛素需求量↓ [72]
2 BM-MNC 180×106cells /kg 3 肝穿刺 12个月 ICA、GAD、抗胰岛素抗体水平为阴性,C肽水平↑,HbA1c↓ [73]
3 UC-MSCs 2.6 ±1.2×107 cells 29 24个月 FPG↓,PPG↓,HbA1c↓,C肽水平↑,CPGR↑,胰岛素需求量↓ [74]
4 BM-MSC 2.75×106cells/kg 20 静脉 12个月 C肽水平↑或者─ [75]
5 AD-MSC and BM-HSC 20 门脉+胸腺循环及皮下组织 24个月 HbA1c↓,C肽水平↑,胰岛素需求量↓,GAD↓ [29]
6 UC-MSCs and aBM-MNC 1.1×106cells /kg and 106.8×106cells /kg 42 胰背动脉 12个月 AUCc-pep↑,胰岛素面积↑,HbA1C↓,胰岛素需求量↓ [76]
表2  不同组织来源的干细胞对I型糖尿病的临床治疗效果统计
序列 细胞来源 细胞回输数量 受试者数 注射方式 随访时间 治疗效果 参考文献
1 BM-MSCs 3.5±1.4×108cells 10 12指肠 6个月 HbA1c↓, 胰岛素需求量↓ [77]
2 BM-MSCs 2.8 ± 1.9 × 109cells 118 胰背动脉 33个月 FPG↓,HbA1c↓,C肽水平↑,CPGR↑, 胰岛素需求量↓ [78]
3 UC-MSCs 1.0×106cells/kg 61 静脉 36个月 FPG↓,HbA1c↓,PPG↓, C肽水平↑,CPGR↑, HOMA-β↑,胰岛素需求量↓ [79]
4 UC-MSCs 1.8×106cells /kg 18 静脉 6个月 FPG↓,PPG↓,C肽水平↑, Tregs↑ [80]
5 PDSC 1.35×106cells /kg 10 静脉 3个月 胰岛素需求量↓,C肽水平↑ [81]
6 ADSCs NA 40 静脉 3个月 FPG↓,HbA1c↓,胰岛素需求量↓,C肽水平↑ [82]
表3  不同组织来源的干细胞对2型糖尿病的临床治疗效果统计
[1] Zimmet P. Globalization,coca-colonization and the chronic disease epidemic: Can the doomsday scenario be averted. Journal of Internal Medicine, 2000,247(3):301-310.
doi: 10.1046/j.1365-2796.2000.00625.x pmid: 10762445
[2] Amos A F, Mccarty D J, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Medicine, 1997,14(S5):S7-S85.
doi: 10.1002/(SICI)1096-9136(199712)14:5+<S7::AID-DIA522>3.3.CO;2-I
[3] King H, Aubert R E, Herman W H. Global burden of diabetes, 1995 2025: Prevalence, numerical estimates, and projections. Diabetes Care, 1998,21(9):1414-1431.
doi: 10.2337/diacare.21.9.1414 pmid: 9727886
[4] Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes & Metabolism, 1996,22(2):122-131.
pmid: 8792092
[5] Benjamin E J, Virani S S, Callaway C W, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018,137(12):e67-e492.
doi: 10.1161/CIR.0000000000000558 pmid: 29386200
[6] Beckman J A, Creager M A, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002,287(19):2570-2581.
doi: 10.1001/jama.287.19.2570 pmid: 12020339
[7] Margaret Chan. Global report on diabetes. [2020-06-25]. http://www.who.int/diabetes/global-report/en/. .
[8] WHO. Global Strategy on diet, physical activity and health. Scandinavian Journal of Nutrition, 2009,48(2):292-302.
[9] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013,36(Suppl 1):S67-S74.
doi: 10.2337/dc13-S067
[10] International Diabetes Foundation. Diabetes Atlas 8th Edition. [2020-06-25]. http://www.dia-betesatlas.org.
[11] 张波, 杨文英. 中国糖尿病流行病学及预防展望. 中华糖尿病杂志, 2019,11(1):7-10.
Zhang B, Yang W Y. Outlook for the epidemiology and prevention of diabetes in china. Chin J Diabetes Mellitus, 2019,11(1):7-10.
[12] Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017,317(24):2515-2523.
doi: 10.1001/jama.2017.7596 pmid: 28655017
[13] American Diabetes Association. Standards of medical care in diabetes 2019. Diabetes Care, 2019,42(Suppl 1):S1-S193.
doi: 10.2337/dc19-Sint01 pmid: 30559224
[14] Friedenstein A J, Petrakova K V, Kurolesova A I, et al. Heterotopic of bone marrow, analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968,6(2):230-247.
pmid: 5654088
[15] Anker P S, Scherjon S A, Kleijburg-van Dder K C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004,22(7):1338-1345.
doi: 10.1634/stemcells.2004-0058 pmid: 15579651
[16] Zu P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering Part A, 2001,7(2):211-228.
[17] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy, 2006,8(4):315-317.
doi: 10.1080/14653240600855905 pmid: 16923606
[18] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 2008,8(9):726-736.
pmid: 19172693
[19] Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia, 2010,53(1):10-20.
doi: 10.1007/s00125-009-1573-7 pmid: 19890624
[20] Sun Y, Chen L, Hou X G, et al. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal, 2007,120(9):771-776.
pmid: 17531117
[21] Khorsandi L, Khodadadi A, Nejad-Dehbashi F, et al. Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells. Cell and Tissue Research, 2015,361(3):745-753.
doi: 10.1007/s00441-015-2140-9 pmid: 25795142
[22] Gao F, Wu D Q, Hu Y H, et al. In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Translational Research, 2008,151(6):293-302.
pmid: 18514140
[23] Tang D Q, Wang Q, Burkhardt B R, et al. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cell, 2012,1(2):114-127.
[24] Piran M, Enderami S E, Piran M, et al. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals, 2017,46(5):23-28.
doi: 10.1016/j.biologicals.2016.12.004
[25] Van P P, Thi-My N P, Thai-Quynh N A, et al. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation, 2014,87(5):200-208.
pmid: 25201603
[26] Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochemical & Biophysical Research Communications, 2006,341(4):1135-1140.
doi: 10.1016/j.bbrc.2006.01.072 pmid: 16460677
[27] Trivedi H L, Vanikar A V, Thakker U, et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplantation Proceedings, 2008,40(4):1135-1139.
[28] Dave S D, Trivedi H L, Gopal S C, et al. Combined therapy of insulin-producing cells and haematopoietic stem cells offers better diabetic control than only haematopoietic stem cells’ infusion for patients with insulin-dependent diabetes. Bmj Case Reports, 2014,8(1):38-41.
[29] Thakkar U G, Trivedi H L, Vanikar A V, et al. Co-infusion of insulin-secreting adipose tissue-derived mesenchymal stem cells and hematopoietic stem cells: novel approach to management of type 1 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2016,36(4):426-432.
doi: 10.1007/s13410-015-0409-x
[30] Shapiro A M. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine, 2000,343(4):230-238.
doi: 10.1056/NEJM200007273430401 pmid: 10911004
[31] Ryan E A, Paty B W, Senior P A, et al. Five years follow up after clinical islet transplantation. Diabetes, 2005,54(7):2060-2069.
doi: 10.2337/diabetes.54.7.2060 pmid: 15983207
[32] Scharp D W, Lacy P E, Santiago J V, et al. Results of our first nine intraportal islet allografts in type 1, insulin-dependent diabetic patients. Transplantation, 1991,51(1):76-85.
doi: 10.1097/00007890-199101000-00012 pmid: 1987709
[33] Hayek A, Beattie G M, Cirulli V, et al. Growth factor matrix-induced proliferation of human adult beta-cells. Diabetes, 1995,44(12):1458-1460.
doi: 10.2337/diab.44.12.1458 pmid: 7589854
[34] Yoshihiko I, Takeshi A, Dausuke Y, et al. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic beta-cells. Biochem Biophys Res Commun, 2005,333(1):273-282.
pmid: 15950193
[35] Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnology, 2003,21(7):763-770.
doi: 10.1038/nbt841 pmid: 12819790
[36] Park K S, Kim Y S, Kim J H, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation, 2010,89(5):509-517.
doi: 10.1097/TP.0b013e3181c7dc99 pmid: 20125064
[37] Yoshiaki O, Masahiro T, Naomasa K, et al. Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation, 2010,90(12):1366-1373.
doi: 10.1097/TP.0b013e3181ffba31 pmid: 21076379
[38] Wang H, Strange C, Nietert P J, et al. Autologous mesenchymal stem cell and islet cotransplantation: safety and efficacy. Stem Cells Translational Medicine, 2017,7(1):11-19.
doi: 10.1002/sctm.17-0139 pmid: 29159905
[39] Ryan J M, Barry F P, Murphy J M, et al. Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2005,2(1):8-19.
doi: 10.1186/1476-9255-2-8
[40] Vasandan A B, Jahnavi S, Shashank C, et al. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Scientific Reports, 2016,6(1):1-17.
doi: 10.1038/s41598-016-0001-8 pmid: 28442746
[41] Mittal M, Tiruppathi C, Nepal S, et al. TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc Natl Acad Sci USA, 2016,113(50):e8151-e8158.
doi: 10.1073/pnas.1614935113 pmid: 27911817
[42] Wang G, Cao K, Liu K, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death & Differentiation, 2018,25(7):1209-1223.
doi: 10.1038/s41418-017-0006-2 pmid: 29238069
[43] Selleri S, Bifsha P, Civini S, et al. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget, 2016,7(21):30193-30210.
doi: 10.18632/oncotarget.8623 pmid: 27070086
[44] Yang Q, Zheng C, Cao J, et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death and Differentiation, 2016,23(11):1850-1861.
doi: 10.1038/cdd.2016.71 pmid: 27447115
[45] Su J, Chen X, Huang Y, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death and Differentiation, 2014,21(3):388-396.
doi: 10.1038/cdd.2013.149 pmid: 24162664
[46] Aggarwal S. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005,105(4):1815-1822.
doi: 10.1182/blood-2004-04-1559 pmid: 15494428
[47] Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 2007,110(10):3691-3694.
doi: 10.1182/blood-2007-02-075481 pmid: 17684157
[48] Cao W, Yang Y, Wang Z, et al. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity, 2011,35(2):273-284.
pmid: 21835648
[49] Augello A, Tasso R, Negrini S, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 2005,35(5):1482-1490.
doi: 10.1002/eji.200425405 pmid: 15827960
[50] Sioud M, Mobergslien A, Boudabous A, et al. Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scandinavian Journal of Immunology, 2010,71(4):267-274.
doi: 10.1111/j.1365-3083.2010.02378.x pmid: 20384870
[51] Hsu W T, Lin C H, Chiang B L, et al. Prostaglandin E-2 potentiates mesenchymal stem cell-induced IL-10(+) IFN-gamma(+) CD4(+) regulatory T cells to control transplant arteriosclerosis. The Journal of Immunology, 2013,190(5):2372-2380.
doi: 10.4049/jimmunol.1202996 pmid: 23359497
[52] Groh M E, Maitra B, Szekely E, et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 2005,33(8):928-934.
doi: 10.1016/j.exphem.2005.05.002 pmid: 16038786
[53] Corradiperini C, Santos T M, Nos C, et al. Co-transplantation of xenogeneic bone marrow-derived mesenchymal stem cells alleviates rejection of pancreatic islets in non-obese diabetic mice. Transplantation Proceedings, 2017,49(4):902-905.
[54] Ding Y, Xu D, Feng G, et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes, 2009,58(8):1797-1806.
doi: 10.2337/db09-0317 pmid: 19509016
[55] Yoshihiko I, Takeshi A, Dausuke Y, et al. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic beta-cells. Biochem Biophys Res Commun, 2005,333(1):273-282.
doi: 10.1016/j.bbrc.2005.05.100 pmid: 15950193
[56] Movassat J, Saulnier C, Portha B. Insulin administration enhances growth of the cell mass in streptozotocin treated newborn rats. Diabetes, 1997,46(9):1445-1452.
pmid: 9287045
[57] Hao H J, Liu J J, Shen J. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochemical and Biophysical Research Communications, 2013,436(3):418-423.
doi: 10.1016/j.bbrc.2013.05.117 pmid: 23770360
[58] Moshtagh P R, Emami S H, Sharifi A M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. Journal of Physiology and Biochemistry, 2013,69(3):451-458.
doi: 10.1007/s13105-012-0228-1 pmid: 23271274
[59] Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes, 2012,61(6):1616-1625.
doi: 10.2337/db11-1141 pmid: 22618776
[60] Lee R H, Seo M J, Reger R L, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences, 2006,103(46):17438-17443.
[61] Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β Cells. Cell, 2009,138(3):449-462.
doi: 10.1016/j.cell.2009.05.035 pmid: 19665969
[62] Chandravanshi B, Bhonde R R. Shielding engineered islets with mesenchymal stem cells enhance survival under hypoxia. Journal of Cellular Biochemistry, 2017. 118(9):2672-2683.
doi: 10.1002/jcb.25885 pmid: 28098405
[63] Ohkouchi S, Block G J, Katsha A M, et al. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the warburg effect by secreting STC1. Molecular Therapy, 2012,20(2):417-423.
doi: 10.1038/mt.2011.259 pmid: 22146344
[64] Li J, Li D, Liu X, et al. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. Journal of Inflammation, 2012,9(1):9-33.
pmid: 22439901
[65] Lesley G E, Andrew J, Jerrold M O. Obesity, inflammation, and insulin resistance. New York: Springer, 2013: 1-23.
[66] Jurrissen T J, Dylan O T, Winn N C, et al. Endothelial dysfunction occurs independently of adipose tissue inflammation and insulin resistance in ovariectomized Yucatan miniature-swine. Adipocyte, 2018,7(1):35-44.
doi: 10.1080/21623945.2017.1405191 pmid: 29283284
[67] Chen T, Xing J, Liu Y. Effects of telmisartan on vascular endothelial function, inflammation and insulin resistance in patients with coronary heart disease and diabetes mellitus. Experimental and Therapeutic Medicine, 2018,15(1):909-913.
doi: 10.3892/etm.2017.5451 pmid: 29399098
[68] Bhakta H K, Paudel P, Fujii H, et al. Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Archives of Pharmacal Research, 2017,40(11):1314-1327.
doi: 10.1007/s12272-017-0970-6 pmid: 29027136
[69] Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats. Diabetes. 2012,61(6):1616-1625.
doi: 10.2337/db11-1141 pmid: 22618776
[70] Deng Z, Xu H, Zhang J, et al. Infusion of adipose derived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats. Molecular Medicine Reports, 2018. 17(6):8466-8474.
pmid: 29693163
[71] Shree N, Bhonde R R. Conditioned media from adipose tissue derived mesenchymal stem cells reverse insulin resistance in cellular models. Journal of Cellular Biochemistry, 2017. 118(8):2037-2043.
doi: 10.1002/jcb.25777 pmid: 27791278
[72] Voltarelli J C, Couri C, Stracieri A, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. The Journal of the American Medical Association, 2007,297(14):1568-1576.
doi: 10.1001/jama.297.14.1568 pmid: 17426276
[73] Mesples A, Majeed N, Zhang Y, et al. Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: preliminary results. Medical Science Monitor, 2013,19(14):852-857.
doi: 10.12659/MSM.889525
[74] Hu J, Yu X, Wang Z, et al. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 2013,60(3):347-357.
doi: 10.1507/endocrj.ej12-0343 pmid: 23154532
[75] Carlsson P O, Schwarcz E, Korsgren O. Preserved β-Cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015,64(2):587-592.
doi: 10.2337/db14-0656 pmid: 25204974
[76] Cai J, Wu Z, Xu X, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: A pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care, 2016,39(1):149-157.
doi: 10.2337/dc15-0171 pmid: 26628416
[77] Bhansali A, Upreti V, Khandelwal N, et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells and Development, 2009,18(10):1407-1416.
doi: 10.1089/scd.2009.0164 pmid: 19686048
[78] Hu J, Li C, Wang L, et al. Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocrine Journal, 2012,59(11):1031-1039.
doi: 10.1507/endocrj.ej12-0092 pmid: 22814142
[79] Hu J, Wang Y, Gong H, et al. Long term effect and safety of Wharton’s jelly-derived mesenchymal stem cells on type 2 diabetes. Experimental and Therapeutic Medicine, 2016,12(3):1857-1866.
pmid: 27588104
[80] Kong D, Zhuang X, Wang D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clinical Laboratory, 2014,60(12):1969-1976.
doi: 10.7754/clin.lab.2014.140305 pmid: 25651730
[81] Jiang R, Han Z, Zhuo G, et al. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Frontiers of Medicine, 2011,5(1):94-100.
doi: 10.1007/s11684-011-0116-z pmid: 21681681
[82] Purwito P, Wibisono S, Sutjahjo A, et al. Adipose derived mesenchymal stem cells for treatment tertiary failure diabetes mellitus type 2. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2017,31(3):91-95.
[83] Veres A, Faust A L, Bushnell H L, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature, 2019,569(7756):368-373.
doi: 10.1038/s41586-019-1168-5 pmid: 31068696
[84] Velazco C L, Song J, Maxwell K G, et al. Acquisition of dynamic function in human stem cell derived β cells. Stem Cell Reports, 2019,12(2):351-365.
doi: 10.1016/j.stemcr.2018.12.012 pmid: 30661993
[1] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[5] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[6] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[7] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[8] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[9] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[10] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[11] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[12] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[15] 范月蕾,陆娇,陈大明,毛开云. 干细胞专利价值评估与转移转化对策研究 *[J]. 中国生物工程杂志, 2019, 39(1): 99-106.