Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (11): 67-72    DOI: 10.13523/j.cb.2006008
综述     
诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*
邱丹丹1,2,陆彩霞2**(),代解杰2**()
1 昆明医科大学 昆明 650504
2 中国医学科学院/北京协和医学院医学生物学研究所 昆明 650118
Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model
QIU Dan-dan1,2,LU Cai-xia2**(),DAI Jie-jie2**()
1 Kunming Medical University,Kunming 650504, China
2 Institute of Medical Biology, Chinese Academy of Medicine Sciences(CAMS)/Peking UnionMedical College(PUMC), Kunming 650118, China
 全文: PDF(373 KB)   HTML
摘要:

诱导多能干细胞(induced pluripotent stem cells,iPSCs)与胚胎干细胞(embryonic stem cells,ESCs)类似,是一类具有自我更新和无限增殖潜能的细胞, 并且能诱导分化为机体各胚层所有类型的细胞。因iPSCs来源于机体本身,规避了ESCs的免疫排斥和医学伦理等问题,具有极大的研究前景及应用潜能。大量研究表明,诱导多能干细胞分化的肝样细胞(iPS-derived hepatocyte-like cells,iHLCs)已广泛运用于HCV体内外感染模型的建立,并用于研究HCV的发病机制、宿主基因在HCV致病机制和筛选新型抗HCV药物及疫苗的研发。主要对iPSCs的来源、从不同策略诱导iPSCs成为功能性肝细胞的研究方法及其在HCV感染模型中的应用进行归纳总结。

关键词: 诱导多能干细胞肝样细胞HCV感染模型    
Abstract:

Induced pluripotent stem cells (iPSCs) as well as embryonic stem cells(ESCs),is a kind of cells with potential of self-renewing and unlimited proliferation,has the potentian of inducing differentiation into all types of cells in every germ layer of the body. iPSCs are derived from the body itself, which avoids the immune rejection and medical ethics problems of ESCs and they play an important role in biomedical research. At present, iPS-derived hepatocyte-like cells(iHLCs) have been widely used in the establishment of in vitro and in vivo infection model of HCV.The HCV model based on iHLCs can be used to study the pathogenesis of HCV,the role of host genes in the pathogenesis of HCV, to screen new anti-HCV drugs and development of vaccine.The origin of iPSCs, the research methods of inducing iPSCs into functional liver cells by different strategies, and the application of iPSCs in HCV infection model were summarized.

Key words: Induced pluripotent stem cells(iPSCs)    Hepatocyte-like cells    HCV infection model
收稿日期: 2020-06-04 出版日期: 2020-12-11
ZTFLH:  Q939.47  
基金资助: * 云南省科技人才和平台项目(2018HB071);云南省科技人才和平台项目(2017HC019);云南省高层次卫生计生技术人才培养(D-2018026);昆明市科技创新团队(2019-1-R-24483)
通讯作者: 陆彩霞,代解杰     E-mail: lcx@imbcams.com.cn;djj@imbcams.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邱丹丹
陆彩霞
代解杰

引用本文:

邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.

QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model. China Biotechnology, 2020, 40(11): 67-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006008        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I11/67

[1] Pawlotsky J M, Chevaliez S, McHutchison J G. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology, 2007,132(5):1979-1998.
[2] Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology, 2005,42(4):962-973.
doi: 10.1002/hep.20819 pmid: 16149085
[3] Chisari F V. Unscrambling hepatitis C virus-host interactions. Nature, 2005,436(7053):930-932.
[4] WHO. Global health sector strategy on viral hepatitis 2016-2021. Geneva:World Health Organization, 2016.
[5] Scheel T K, Rice C M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med, 2013,19(7):837-849.
pmid: 23836234
[6] Liang T J, Ghany M G. Current and future therapies for hepatitis C virus infection. N Engl J Med, 2013,368(20):1907-1917.
pmid: 23675659
[7] Yilmaz H, Yilmaz E M, Leblebicioglu H. Barriers to access to hepatitis C treatment. J Infect Dev Ctries, 2016,10(4):308-316.
[8] Lo Re V, Gowda C, Urick P N, et al. Disparities in absolute denial of modern hepatitis C therapy by type of insurance. Clin Gastroenterol Hepatol, 2016,14(7):1035-1043.
[9] Bukh J. A critical role for the chimpanzee model in the study of hepatitis C. Hepatology, 2004,39(6):1469-1475.
[10] Gai H, Nguyen D M, Moon Y J, et al. Generation of murine hepatic lineage cells from induced pluripotent stem cells. Differentiation, 2010,79(3):171-181.
doi: 10.1016/j.diff.2010.01.002 pmid: 20106584
[11] Si-Tayeb K, Noto F K, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 2010,51(1):297-305.
[12] Song Z, Cai J, Liu Y, et al. Efficient generation of hepatocytelike cells from human induced pluripotent stem cells. Cell Res, 2009,19(11):1233-1242.
[13] Sullivan G J, Hay D C, Park I H, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2010,51(1):329-335.
[14] Chen Y F, Tseng C Y, Wang H W, et al. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 2012,55(4):1193-1203.
[15] Takayama K, Inamura M, Kawabata K, et al. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS One, 2011,6(7):e21780.
[16] Inamura M, Kawabata K, Takayama K, et al. Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther, 2011,19(2):400-407.
pmid: 21102561
[17] Takayama K, Inamura M, Kawabata K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther, 2012,20(1):127-137.
pmid: 22068426
[18] Du C, Narayanan K, Leong M F, et al. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials, 2014,35(23):6006-6014.
doi: 10.1016/j.biomaterials.2014.04.011 pmid: 24780169
[19] Krause P, Saghatolislam F, Koenig S, et al. Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. In Vitro Cell Dev Biol Anim, 2009,45(5-6):205-212.
[20] Takebe T, Zhang R R, Koike H, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc, 2014,9(2):396-409.
[21] Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013,499(7459):481-484.
[22] Pettinato G, Lehoux S, Ramanathan R, et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with endothelial cells. Sci Rep, 2019,9(1):8920.
doi: 10.1038/s41598-019-45514-3 pmid: 31222080
[23] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006,126(4):663-676.
[24] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007,131(5):861-872.
[25] Cheng Z, Ito S, Nishio N, et al. Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells. J Mol Cell Biol, 2011,3(2):91-98.
doi: 10.1093/jmcb/mjq044 pmid: 21228011
[26] Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem, 2010,285(15):11227-11234.
doi: 10.1074/jbc.M109.086389 pmid: 20139068
[27] Li Y, Liu T, van Halm-Lutterodt N, et al. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther, 2016,7:31.
[28] Aasen T, Raya A, Barrero M J, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol, 2008,26(11):1276-1284.
[29] Jouni M, SI-Tayeb K, Es-Salah-Lamoureux Z, et al. Personalized medicine:Using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. J Am Heart Assoc, 2015,4(9):e002159.
pmid: 26330336
[30] Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 2008,105(15):5856-5861.
doi: 10.1073/pnas.0801677105 pmid: 18391196
[31] Schenke-Layland K, Rhodes K E, Angelis E, et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic line. Cells, 2008,26(6):1537-1546.
[32] Ma F, Ebihara Y, Umeda K, et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA, 2008,105(35):13087-13092.
[33] Kattman S J, Witty A D, Gagliardi M, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 2011,8(2):228-240.
[34] Nostro M C, Sarangi F, Yang C, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports, 2015,4(4):591-604.
doi: 10.1016/j.stemcr.2015.02.017 pmid: 25843049
[35] Sa-Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. [2020-05-23]. https://virologyj.biomedcentral.com/articles/10.1186/s12985-016-0519-1.
[36] Sa-Ngiamsuntorn K, Hongeng S, Wongkajornsilp A. Development of hepatocyte-like cell derived from human induced pluripotent stem cell as a host for clinically isolated hepatitis C virus. Curr Protoc Stem Cell Biol, 2017,42(1):4A.13.1-4A.13.34.
[37] Nakamori D, Akamine H, Takayama K, et al. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci Rep, 2017,7(1):16675.
pmid: 29192290
[38] Xie B, Sun D, Du Y, et al. A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Res, 2019,29(9):696-710.
doi: 10.1038/s41422-019-0196-x pmid: 31270412
[39] Wakita T, Kato T. Development of an infectious HCV cell culture system. In: Tan S L. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience, 2006.
[40] Helle F, Brochot E, Fournier C, et al. Correction: Permissivity of primary human hepatocytes and different hepatoma cell lines to cell culture adapted hepatitis C virus. PLoS One, 2019,14(9):e0223022.
[41] Podevin P, Carpentier A, Pene V, et al. Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology, 2010,139(4):1355-1364.
doi: 10.1053/j.gastro.2010.06.058 pmid: 20600021
[42] Gondeau C, Briolotti P, Razafy F, et al. In vitro infection of primary human hepatocytes by HCV-positive sera: insights on a highly relevant model. Gut, 2014,63(9):1490-1500.
[43] Ellor S, Shupe T, Petersen B. Stem cell therapy for inherited metabolic disorders of the live. Exp Hematol, 2008,36(6):716-725.
[44] Schwartz R E, Trehan K, Andrus L, et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA, 2012,109(7):2544-2548.
pmid: 22308485
[45] Catanese M T, Dorner M. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology, 2015,479-480:221-233.
doi: 10.1016/j.virol.2015.03.014 pmid: 25847726
[46] Roelandt P, Obeid S, Paeshuyse J, et al. Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol, 2012,57(2):246-251.
doi: 10.1016/j.jhep.2012.03.030 pmid: 22521345
[47] Yoshida T, Takayama K, Kondoh M, et al. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun, 2011,416(1-2):119-124.
pmid: 22093821
[48] Si-Tayeb K, Duclos-Vallée J C, Petit M A. Hepatocyte-like cells differentiated from human induced pluripotent stem cells (iHLCs) are permissive to hepatitis C virus (HCV) infection: HCV study gets personal. J Hepatol, 2012,57(3):689-691.
doi: 10.1016/j.jhep.2012.04.012 pmid: 22565120
[49] Sch?bel A, R?sch K, Herker E. Functional innate immunity restricts hepatitis C virus infection in induced pluripotent stem cell-derived hepatocytes. Sci Rep, 2018,8(1):3893.
doi: 10.1038/s41598-018-22243-7 pmid: 29497123
[50] Zhou X, Sun P, Lucendo-Villarin B, et al. Modulating innate immunity improves hepatitis C virus infection and replication in stem cell-derived hepatocytes. Stem Cell Reports, 2014,3(1):204-214.
doi: 10.1016/j.stemcr.2014.04.018 pmid: 25068132
[51] Irudayam J I, Contreras D, Spurka L, et al. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res, 2015,15(2):354-364.
doi: 10.1016/j.scr.2015.08.003 pmid: 26313525
[52] Wu X, Robotham J M, Lee E, et al. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog, 2012,8(4):e1002617.
doi: 10.1371/journal.ppat.1002617 pmid: 22496645
[53] Nagamoto Y, Takayama K, Tashiro K, et al. Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/ SCID mice by overexpression of FNK, a Bcl-xL mutant gene. Cell Transplant, 2015,24(6):1127-1138.
pmid: 24806294
[54] Carpentier A, Tesfaye A, Chu V, et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest, 2014,124(11):4953-4964.
[55] Schwartz R E, Bram Y, Frankel A. Pluripotent stem cell-derived hepatocyte-like cells: A tool to study infectious disease. Curr Pathobiol Rep, 2016,4(3):147-156.
doi: 10.1007/s40139-016-0113-7 pmid: 29910973
[56] Corbett J L, Duncan S A. iPSC-derived hepatocytes as a platform for disease modeling and drug discovery. Front Med, 2019,6:265.
doi: 10.3389/fmed.2019.00265
[1] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[2] 夏朦, 田晓红, 柏树令, 侯伟健. 诱导多能干细胞技术的优化及其应用前景[J]. 中国生物工程杂志, 2016, 36(6): 87-91.
[3] 赵丽霞, 张金吨, 张健, 李云霞, 苏杰, 孙伟, 赵高平, 戴雁峰, 郭继彤, 胡树香, WANG Wei, LIU Pen-tao, 李喜和. 利用piggyBac转座子制备牛成体多能干细胞诱导技术研究[J]. 中国生物工程杂志, 2013, 33(2): 77-82.
[4] 范勇, 骆玉梅, 陈欣杰, 孙筱放. 无饲养层和动物源蛋白的β-地中海贫血诱导多能干细胞系的建立[J]. 中国生物工程杂志, 2012, 32(6): 69-73.