Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 94-100    DOI: 10.13523/j.cb.20190412
综述     
诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *
李欣1,赵中利1,罗晓彤2,曹阳1,张立春1,于永生1**(),金海国1**()
1 吉林省农业科学院畜牧科学分院 公主岭 136100
2 延边大学农学院 延吉 133002
Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells
Xin LI1,Zhong-li ZHAO1,Xiao-tong LUO2,Yang CAO1,Li-chun ZHANG1,Yong-sheng YU1**(),Hai-guo JIN1**()
1 Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling 136100,China
2 Agricultural College, Yan Bian University, Yanji 133002, China
 全文: PDF(428 KB)   HTML
摘要:

诱导多能干细胞(induced pluripotent stem cells,iPSCs)是利用细胞重编程技术人工获得的与胚胎干细胞(embryonic stem cells,ESCs)功能类似的细胞,能分化成包括三胚层在内的所有细胞类型,并且规避了ESCs的伦理学争议和移植后的免疫排斥问题,具有十分广阔的应用前景。对iPSCs体外诱导为生殖细胞所用的诱导物及其诱导效果进行了综述,生殖细胞发育机制的研究有望促进未来生殖和发育技术的进步。

关键词: 诱导多能干细胞雄性生殖细胞分化诱导物    
Abstract:

Induced pluripotent stem cells(iPSCs) refer to stem cells that are artificially produced by cellular reprogramming, which have similar functions to embryonic stem cells. They can differentiate into all cell types, and avoid the ethical controversy of ESCs and immune rejection after transplantation. They have a broad application prospect.The advances in the in vitro differentiation of male germ cells using iPSCs by different inducers was reviewed, the effect was also investigated. Exploring development mechanisms of germ cells is promising to promote future reproductive and developmental engineering technologies.

Key words: iPSCs    Male germ cells    Differentiation    Inducers
收稿日期: 2018-09-27 出版日期: 2019-05-08
ZTFLH:  Q813.5  
基金资助: * 吉林省农业科学院院创新工程资助项目(CXGC2018DC001)
通讯作者: 于永生,金海国     E-mail: yuyongsheng2002@163.com;khk1962@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李欣
赵中利
罗晓彤
曹阳
张立春
于永生
金海国

引用本文:

李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.

Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells. China Biotechnology, 2019, 39(4): 94-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190412        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/94

图1  iPS向雄性生殖细胞分化示意图
[1] Wu Y, Li O, He C , et al. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017,15(6) : 3690-3698.
doi: 10.3892/mmr.2017.6431 pmid: 5436227
[2] Wernig M, Zhao J P, Pruszak J , et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’ s disease. Proceedings of National Academy of Sciences of the United States of America, 2008,105(15):5856-5861.
doi: 10.1073/pnas.0801677105
[3] Takahashi K, Tanabe K, Ohnuki M , et al. Induction of pluripotent stem cells from human fibroblasts by defined factors. Cell, 2007,131(5):861-872.
doi: 10.1016/j.cell.2007.11.019
[4] Imamura M, Aoi T, Tokumasu A , et al. Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular Reproduction and Development, 2010,77(9):802-811.
doi: 10.1002/mrd.21223 pmid: 20722049
[5] Correia C, Serra M, Espinha N , et al. Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev, 2014,10(6):786-801.
doi: 10.1007/s12015-014-9533-0 pmid: 25022569
[6] Schenke-Layland K, Rhodes K E, Angelis E , et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells, 2008,26(6):1537-1546.
doi: 10.1634/stemcells.2008-0033 pmid: 18450826
[7] Shi Y, Inoue H, Wu J C , et al. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov, 2017,16(2):115-130.
doi: 10.1038/nrd.2016.245 pmid: 27980341
[8] Hikabe O, Hamazaki N, Nagamatsu G , et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 2016,539(7628):299-303.
doi: 10.1038/nature20104 pmid: 27750280
[9] Cai H, Xia X, Wang L , et al. In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochem Biophys Res Commun, 2013,433(3):286-291.
doi: 10.1016/j.bbrc.2013.02.107 pmid: 23524261
[10] Eguizabal C, Montserrat N, Vassena R , et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells , 2011,29(8):1186-1195.
doi: 10.1002/stem.672 pmid: 21681858
[11] Imamura M, Hikabe O , Lin Z Y C , et al. Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol Reprod Dev, 2014,81(1):2-19.
doi: 10.1002/mrd.22259 pmid: 23996404
[12] Yin X H, Li Y, Li J W , et al. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells. Biochem Biophys Res Commun , 2016,473(3):726-732.
doi: 10.1016/j.bbrc.2015.10.012 pmid: 26456649
[13] Yamanaka S . A fresh look at iPS cells. Cell, 2009,137(1):13-17.
doi: 10.1016/j.cell.2009.03.034
[14] Liu S P, Fu R H, Huang Y C , et al. Induced pluripotent stem (iPS) cell research overview. Cell Transplant, 2011,20(1):15-19.
doi: 10.3727/096368910X532828 pmid: 20887681
[15] Li J, Song W, Pan G , et al. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J Hematol Oncol, 2014,7(50):1-18.
doi: 10.1186/1756-8722-7-1 pmid: 3884022
[16] Li Y, Wang X, Feng X , et al. Generation of male germ cells from mouse induced pluripotent stem cells in vitro. Stem Cell Res, 2014,12(2):517-530
doi: 10.1016/j.scr.2013.12.007 pmid: 24463497
[17] Tan H, Wang J J, Cheng S F , et al. Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro. Theriogenology, 2016,85(3):408-418.
doi: 10.1016/j.theriogenology.2015.09.002 pmid: 26456183
[18] Niederreither K, Dollé P . Retinoic acid in development: towards an integrated view. Nat Rev Genet, 2008,9(7):541-553.
doi: 10.1038/nrg2340 pmid: 18542081
[19] Kim J B, Sebastiano V, Wu G , et al. Oct4-induced pluripotency in adult neural stem cells. Cell, 2009,136(3):411-419.
doi: 10.1016/j.cell.2009.01.023 pmid: 19203577
[20] Koubova J, Hu Y C, Bhattacharyya T , et al. Retinoic acid activates two pathways required for meiosis in mice. PLoS Genet, 2014,10(8):e1004541.
doi: 10.1371/journal.pgen.1004541 pmid: 4125102
[21] Costa J J, Souza G B, Soares M A , et al. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells. Histol Histopathol, 2018,33(2):121-132
doi: 10.14670/HH-11-917 pmid: 28691729
[22] Morita Y, Tilly J L . Segregation of retinoic acid effects on fetal ovarian germ cell mitosis versus apoptosis by requirement for new macromolecular synthesis. Endocrinology, 1999,140(6):2696-2703.
doi: 10.1210/endo.140.6.6826 pmid: 10342860
[23] Zhang Y, Wang Y, Zuo Q , et al. Selection of the inducer for the differentiation of chicken embryonic stem cells into male germ cells in vitro. PLoS One, 2016,11(10):e0164664.
doi: 10.1371/journal.pone.0164664
[24] Geijsen N, Horoschak M, Kim K , et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004,427(6970):148-154.
[25] Li P, Hu H, Yang S , et al. Differentiation of induced pluripotent stem cells into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction. Biomed Res Int, 2013,2013(1):608728.
doi: 10.1155/2013/608728 pmid: 23509752
[26] Yang S, Yuan Q, Niu M , et al. BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2. Reproduction, 2017,153(2):211-220.
doi: 10.1530/REP-16-0292 pmid: 27864336
[27] Wozney J M . Overview of bone morphogenetic proteins. Spine, 2002,27(16):2-8.
doi: 10.1097/01.BRS0000020725.01916.7E pmid: 12205411
[28] He Z . Derivation of male germ cells from induced pluripotent stem (iPS) cells: a novel and crucial source for generating male gametes. Asian J Androl, 2012,14(4):516-517.
doi: 10.1038/aja.2012.44 pmid: 22635161
[29] Lochab A K, Extavour C G . Bone morphogenetic protein (BMP) signaling in animal reproductive system development and function. Dev Biol, 2017,427(2):258-269.
doi: 10.1016/j.ydbio.2017.03.002 pmid: 28284906
[30] Ying Y, Liu X M, Marble A , et al. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol, 2000,14(7):1053-1063.
doi: 10.1210/me.14.7.1053 pmid: 10894154
[31] Ying Y, Qi X, Zhao G Q . Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci USA, 2001,98(14):7858-7862.
doi: 10.1073/pnas.151242798
[32] Kee K, Gonsalves J M, Clark A T , et al. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev, 2006,15(6):831-837.
doi: 10.1089/scd.2006.15.831 pmid: 17253946
[33] Panula S, Medrano J V, Kee K , et al. Human germ cell differentiation from fetal-and adult-derived induced pluripotent stem cells. Hum Mol Genet, 2011,20(4):752-762.
doi: 10.1093/hmg/ddq520
[34] Bucay N, Yebra M, Cirulli V , et al. A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem Cells, 2009,27(1):68-77.
doi: 10.1634/stemcells.2007-1018 pmid: 18845765
[35] Park T S, Galic Z, Conway A E , et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells, 2009,27(4):783-795.
doi: 10.1002/stem.13 pmid: 19350678
[36] Yu J, Vodyanik M A, Smuga-Otto K , et al. Induced pluripotent stem cell lines derived from human somatic cells .Science, 2007,31(5858)8:1917-1920.
[37] Hikabe O, Hamazaki N, Nagamattsu G , et al. Reconstitution in vitro of the entire cycle of the mouse female gern line. Nature. 2016,539(7628):299-303.
doi: 10.1038/nature20104 pmid: 27750280
[38] Hashimoto H, Yuasa S . Testosterone induces cardiomyocyte differentiation from embryonic stem cells. J Mol Cell Cardiol, 2013,62(1):69-71.
doi: 10.1016/j.yjmcc.2013.05.008 pmid: 23711440
[39] Silva C, Wood J R, Salvador L , et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev, 2009,76(1):11-21.
doi: 10.1002/mrd.20925 pmid: 18425777
[40] Narenji Sani R, Tajik P, Movahedin M , et al. Effect of follicle stimulating hormone and testosterone on viability rate of cryopreserved spermatogonial stem cell after thawing. Iran J Vet Sci Technol, 2013,5:26-34.
[41] Tajik P, Sani R N, Moezifar M , et al. Effect of follicle- stimulating hormone and testosterone on colony formation of bovine spermatogonial stem cell. Comp Clin Pathol 2014,23(4):901-906.
doi: 10.1007/s00580-013-1710-z
[42] Zanganeh B M, Rastegar T, Roudkenar M H , et al. Co-culture of spermatogonial stem cells with sertoli cells in the presence of testosterone and FSH improved differentiation via up-regulation of post meiotic genes. Acta Med Iran, 2013,51(1):1-11.
pmid: 23456578
[43] Silva C, Wood J R, Salvador L , et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev, 2009,76(1):11-21.
doi: 10.1002/mrd.20925 pmid: 18425777
[44] Correia S, Alves M R, Cavaco J E , et al. Estrogenic regulation of testicular expression of stem cell factor and c-kit: implications in germ cell survival and male fertility. Fertil Steril, 2014,102(1):299-306.
doi: 10.1016/j.fertnstert.2014.04.009 pmid: 24825426
[45] Jeong W, Jung S, Bazer F , et al. Stem cell factor-induced AKT cell signaling pathway:effects on porcine trophectoderm and uterine luminal epithelial cells. Gen Comp Endocrinol, 2017,250(1):113-121.
doi: 10.1016/j.ygcen.2017.05.015
[46] Payer B, Saitou M, Barton S C , et al. Stella is a maternal effect gene required for normal early development in mice. Curr Biol, 2003,13(23):2110-2117.
doi: 10.1016/j.cub.2003.11.026 pmid: 14654002
[47] Bendall S C, Hughes C, Campbell J L , et al. An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol Cell Proteomics, 2009,8(3):421-432.
doi: 10.1074/mcp.M800190-MCP200 pmid: 2649806
[48] West F D, Machacek D W, Boyd N L , et al. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells, 2008,26(11):2768-2776.
doi: 10.1634/stemcells.2008-0124 pmid: 18719225
[49] Bahadorani M, Hosseini S M, Abedi P , et al. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. Growth Factors, 2015,33(3):181-191.
doi: 10.3109/08977194.2015.1062758 pmid: 26154310
[50] Wang H, Xiang J, Zhang W , et al. Induction of germ cell-like cells from porcine induced pluripotent stem cells. Sci Rep, 2016,6(1):27256.
doi: 10.1038/srep27256 pmid: 4893677
[51] Boozarpour S, Matin M M, Momeni-Moghaddam M , et al. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells. Tissue Cell, 2016,48(3):235-241.
doi: 10.1016/j.tice.2016.03.003 pmid: 27026484
[52] Kang L, Wang J, Zhang Y , et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009,5(2):135-138.
doi: 10.1016/j.stem.2009.07.001 pmid: 19631602
[53] Nayernia K, Lee J H, Drusenheimer N , et al. Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 2006,86(7):654-663.
doi: 10.1038/labinvest.3700429
[54] Dyce P W, Wen L, Li J . In vitro germline potential of stem cells derived from fetal porcine skin. Nature Cell Biology, 2006,8(4):384-390.
doi: 10.1038/ncb1388 pmid: 16565707
[55] Zhao X Y, Li W, Lü Z , et al. iPS cells produce viable mice through tetraploid complementation. Nature, 2009,461(7260):86-90
doi: 10.1038/nature08267 pmid: 19672241
[56] Kerkis A, Fonseca S A, Serafim R C , et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells, 2007,9(4):535-548.
doi: 10.1089/clo.2007.0031 pmid: 18154514
[57] Toyooka Y, Tsunekawa N, Akasu R , et al. Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences, 2003,100(20):11457-11462.
doi: 10.1073/pnas.1932826100
[58] Bowles J, Koopman P . Retinoci acid, meiosis and germ cell fate in mammals. Development, 2007,134(19):3401-3411.
doi: 10.1242/dev.001107
[59] Bowles J, Knight D, Smith C , et al. Retinoid signaling determines germ cell fate in mice. Science, 2006,312(5773):596-600.
doi: 10.1126/science.1125691
[60] Pellegrini M, Grimaldi P, Rossi P , et al. Developmental expression of BMP4/ALK3/SAMD5 signalling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. Journal of Cell Science, 2003,116(16):3363-3372.
doi: 10.1242/jcs.00650 pmid: 12857787
[61] West F D , Roche-Rios M I, Abraham S , et al. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Human Reproduction, 2010,25(1):168-178.
doi: 10.1093/humrep/dep338 pmid: 19840987
[1] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[2] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[3] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[4] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[5] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[6] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[7] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[8] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[9] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[10] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.
[11] 李光然,王伟. 小分子化合物在干细胞神经分化中的研究进展 *[J]. 中国生物工程杂志, 2018, 38(3): 76-80.
[12] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[13] 杨琼,王灵慧,辜浩,堵晶晶,刘进远,张顺华,朱砺. miR-196a-5p对3T3-L1前脂肪细胞增殖和分化的影响效应 *[J]. 中国生物工程杂志, 2018, 38(11): 9-17.
[14] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[15] 李莉莉, 魏琦岩, 王艳芳, 何忠梅, 郜玉刚, 马吉胜. FGF/FGFR信号调控成骨细胞分化的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 107-113.