Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (7): 66-73    DOI: 10.13523/j.cb.2102034
综述     
间充质干细胞来源的外泌体治疗炎症性肠病研究进展*
李开秀,司维()
昆明理工大学灵长类转化医学研究院 昆明 650504
Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells
LI Kai-xiu,SI Wei()
Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650504, China
 全文: PDF(1039 KB)   HTML
摘要:

间充质干细胞主要通过免疫调控和旁分泌在炎症性疾病的治疗中发挥功能。MSC的旁分泌效应是通过分泌可溶性因子并释放外泌体而发挥作用。外泌体将DNA、蛋白质/肽、mRNA、microRNA、脂质和细胞器等成分转移到受体细胞中直接发挥功能。MSC-Exo替代MSC为炎症性肠病的治疗提供了一种新策略。总结不同组织(骨髓、脐带和脂肪)来源的MSC- Exo用于治疗炎症性肠病的研究进展。

关键词: 阿维链霉菌阿维菌素Tn5转座突变分子遗传工具间充质干细胞外泌体炎症性肠病    
Abstract:

Mesenchymal stem cells (MSC) play an important role in the treatment of inflammatory diseases through immune regulation and paracrine effect. The paracrine effect of MSC is mediated by secreting soble factors and releasing exosomes (Exo). Exosomes transfer DNA, proteins/peptides, mRNA, microRNA, lipids and organelles into recipient cells and display functions directly. Therefore, MSC-Exo instead of MSC provides a new strategy for the treatment of inflammatory bowel diseases. In this review, we summarize the progress of MSC-Exo derived from various tissues (bone marrow, umbilical cord and adipose) for the treatment of inflammatory bowel diseases.

Key words: Streptomyces avermitilis    Avermectin    Tn5 transposon mediated mutagenesis    Molecular genetic tool    Mesenchymal stem cells    Exosomes    Inflammatory bowel disease
收稿日期: 2021-02-25 出版日期: 2021-08-03
ZTFLH:  Q819  
基金资助: * 河北省科技计划农业关键共性技术攻关专项(18222916);河北省自然科学基金资助项目(C2019209399);* 国家自然科学基金资助项目(31872973)
通讯作者: 司维     E-mail: siw@lpbr.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李开秀
司维

引用本文:

李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.

LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells. China Biotechnology, 2021, 41(7): 66-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2102034        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I7/66

组织来源 靶向细胞 调控因子 信号通路 参考文献
BMSC - 抑制核转录因子:NF-κBp65
下调促炎因子:TNF-α、iNOS、COX-2、IL-1β
上调抗炎因子:IL-10
抑制氧化:MPO、MDA、SOD、GSH
抑制细胞凋亡:caspase-3、caspase-8、caspase-9
NF-κBp65信号转导途径 [75]
BMSC M2β巨噬细胞 上调抗炎因子:IL-10、金属硫蛋白-2 - [76]
BMSC M2巨噬细胞 下调促炎因子:TNF-α、IL-6、IL-12、VEGF-A、IFN-γ、CCL-24、CCL-17
上调抗炎因子:IL-10、TGF-β
JAK1/STAT1/STAT6信号通路 [77]
BMSC Treg细胞 下调促炎因子:IL-17、IL-6、TNF-α、IFN-γ
上调抗炎因子:IL-10
- [78]
UCMSC 结肠巨噬细胞 下调促炎因子:TNF-α、IL-1β、IL-6、iNOS、IL-7
上调抗炎因子:IL-10
IL-7受体的信号传导 [47]
UCMSC 外周血单核细胞 下调促炎因子:IFN-γ、TNF-α、IL-1β、TGF-β1
上调抗炎因子:IL-10
- [82]
ADMSC - 下调炎症因子:MMP-9、TNF-α、NF-κB、IL-1β、IL-6、COX-2、ICAM-1、TLR-4
下调氧化应激指标:NOX-1,NOX-2、NOX-4、氧化蛋白
下调凋亡蛋白:Bax、caspase 3、PARP下调纤维化标记物:Smad3、TGF-β
- [83]
表1  不同来源的MSC外泌体在炎症性肠病中的作用与机制
模型种属 组织来源 提取方法 注射剂量(μg) 注射频率 参考文献
Sprague Dawley 大鼠 BMSC 超速离心 50/100 /200 1次(造模后第1天注射,第4天取材) [75]
Sprague Dawley 大鼠 ADMSC 超速离心 50 3次(造模后第1天、第3天和第5天注射后取材) [83]
BALB/c小鼠 BMSC 超速离心 50 7次(造模后每天注射,注射7天后取材) [77]
KM小鼠 UCMSC 超速离心 400 3次(在造模期间第3天、第6天、第9天注射,造模11天后取材) [47]
C57BL/6小鼠 BMSC 超速离心 200 2次(造模后第1天和第9天) [76]
C57BL/6J小鼠 BMSC 超速离心 200 3次(造模后连续注射3天,第10天取材) [78]
C57BL/6小鼠 UCMSC 超速离心 200 1次(造模后第1天注射,第3天取材) [82]
表2  不同来源的MSC外泌体采取的提取方法、注射剂量及频率
[1] Gersemann M, Wehkamp J, Stange E F. Innate immune dysfunction in inflammatory bowel disease. Journal of Internal Medicine, 2012, 271(5):421-428.
doi: 10.1111/j.1365-2796.2012.02515.x pmid: 22324936
[2] de Souza H S P, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nature Reviews Gastroenterology & Hepatology, 2016, 13(1):13-27.
[3] Opipari A, Franchi L. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflammatory Bowel Diseases, 2015, 21(1):173-181.
doi: 10.1097/MIB.0000000000000230
[4] Kanneganti T D. Inflammatory bowel disease and the NLRP3 inflammasome. New England Journal of Medicine, 2017, 377(7):694-696.
doi: 10.1056/NEJMcibr1706536
[5] Ng S C, Shi H Y, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 2017, 390(10114):2769-2778.
doi: 10.1016/S0140-6736(17)32448-0
[6] Vegh Z, Kurti Z, Lakatos P L. Epidemiology of inflammatory bowel diseases from west to east. Journal of Digestive Diseases, 2017, 18(2):92-98.
doi: 10.1111/cdd.2017.18.issue-2
[7] Long W Y, Chen L, Zhang C L, et al. Association between NOD2/CARD15 gene polymorphisms and Crohn’s disease in Chinese Zhuang patients. World Journal of Gastroenterology, 2014, 20(16):4737-4744.
doi: 10.3748/wjg.v20.i16.4737
[8] 沈秀云, 施瑞华, 王颖, 等. Toll样受体基因多态性与中国江苏地区汉族人群和白种人群炎症性肠病的相关性. 中华医学杂志, 2010, 90(20):1416-1420.
Shen X Y, Shi R H, Wang Y, et al. Toll-like receptor gene polymorphisms and susceptibility to inflammatory bowel disease in Chinese Han and Caucasian populations. National Medical Journal of China, 2010, 9(20):1416-1420.
[9] Hu J, Mei Q, Huang J, et al. Association of MYO9B gene polymorphisms with inflammatory bowel disease in Chinese Han population. World Journal of Gastroenterology, 2014, 20(23):7466-7472.
doi: 10.3748/wjg.v20.i23.7466
[10] Wang Z T, Xu B, Zhang H X, et al. Association between STAT3 gene polymorphisms and Crohn’s disease susceptibility: a case-control study in a Chinese Han population. Diagnostic Pathology, 2014, 9:104.
doi: 10.1186/1746-1596-9-104
[11] Wang Z T, Hu J J, Fan R, et al. RAGE gene three polymorphisms with Crohn’s disease susceptibility in Chinese Han population. World Journal of Gastroenterology, 2014, 20(9):2397-2402.
doi: 10.3748/wjg.v20.i9.2397
[12] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology, 2013, 200(4):373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871
[13] Gao S J, Zhang L, Lu W, et al. Interleukin-18 genetic polymorphisms contribute differentially to the susceptibility to Crohn’s disease. World Journal of Gastroenterology, 2015, 21(28):8711-8722.
doi: 10.3748/wjg.v21.i28.8711
[14] McCaughan G. Molecular approaches to the side effects of immunosuppressive drugs. Transplantation, 2004, 78(8):1114-1115.
pmid: 15502706
[15] Lan X C, Lan X H, Chang Y, et al. Identification of two additional susceptibility loci for inflammatory bowel disease in a Chinese population. Cellular Physiology and Biochemistry, 2017, 41(5):2077-2090.
doi: 10.1159/000475439
[16] 吴开春, 梁洁, 冉志华, 等. 炎症性肠病诊断与治疗的共识意见(2018年, 北京). 中华消化杂志, 2018, 38(5):292-311.
Wu K C, Liang J, Ran Z H, et al. Chinese consensus on diagnosis and treatment in inflammatory bowel disease(2018, Beijing). Chinese Journal of Digestion, 2018, 38(5):292-311.
[17] Cader M Z, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut, 2013, 62(11):1653-1664.
doi: 10.1136/gutjnl-2012-303955
[18] Caplan A I. Why are MSCs therapeutic? New data: new insight. The Journal of Pathology, 2009, 217(2):318-324.
doi: 10.1002/path.2469 pmid: 19023885
[19] 李焕萍, 刘春蓉, 张永亮. 骨髓间充质干细胞在医学领域中的研究与应用. 中国组织工程研究与临床康复, 2007, 11(28):5622-5625.
Li H P, Liu C R, Zhang Y L. Research and application of bone marrow mesenchymal stem cells in medicine. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(28):5622-5625.
[20] Forbes G M, Sturm M J, Leong R W, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clinical Gastroenterology and Hepatology, 2014, 12(1):64-71.
doi: 10.1016/j.cgh.2013.06.021
[21] Panés J, García-Olmo D, van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. The Lancet, 2016, 388(10051):1281-1290.
doi: 10.1016/S0140-6736(16)31203-X
[22] Levy O, Kuai R, Siren E M J, et al. Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 2020, 6(30):eaba6884.
[23] Toma C, Wagner W R, Bowry S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circulation Research, 2009, 104(3):398-402.
doi: 10.1161/CIRCRESAHA.108.187724
[24] Wu Z, Zhang S, Zhou L, et al. Thromboembolism induced by umbilical cord mesenchymal stem cell infusion: a report of two cases and literature review. Transplantation Proceedings, 2017, 49(7):1656-1658.
[25] Moll G, Ignatowicz L, Catar R, et al. Different procoagulant activity of therapeutic mesenchymal stromal cells derived from bone marrow and placental decidua. Stem Cells and Development, 2015, 24(19):2269-2279.
doi: 10.1089/scd.2015.0120
[26] Ullah M, Liu D D, Thakor A S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience, 2019, 15:421-438.
doi: 10.1016/j.isci.2019.05.004
[27] Kraitchman D L, Tatsumi M, Gilson W D, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 2005, 112(10):1451-1461.
pmid: 16129797
[28] Wagner B, Henschler R. Fate of intravenously injected mesenchymal stem cells and significance for clinical application. Mesenchymal Stem Cells-Basics and Clinical Application II, 2013, 130:19-37.
[29] Scarfe L, Taylor A, Sharkey J, et al. Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Research & Therapy, 2018, 9(1):332.
[30] Mao A S, Özkale B, Shah N J, et al. Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. PNAS, 2019, 116(31):15392-15397.
doi: 10.1073/pnas.1819415116
[31] Volarevic V, Markovic B S, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences, 2018, 15(1):36-45.
doi: 10.7150/ijms.21666
[32] Duijvestein M, Vos A C W, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut, 2010, 59(12):1662-1669.
doi: 10.1136/gut.2010.215152 pmid: 20921206
[33] Outryve M V, Debongnie J C. GLEM/LOK report on proctology practice in Belgium. Results, comments and recommendations. Acta Gastro-enterologica Belgica, 2006, 69(1):25-30.
pmid: 16673559
[34] Griffin M D, Elliman S J, Cahill E, et al. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots. Stem Cells (Dayton, Ohio), 2013, 31(10):2033-2041.
doi: 10.1002/stem.1452
[35] Sala E, Genua M, Petti L, et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine. Gastroenterology, 2015, 149(1):163-176, e20.
doi: 10.1053/j.gastro.2015.03.013
[36] Phinney D G, Pittenger M F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells (Dayton, Ohio), 2017, 35(4):851-858.
doi: 10.1002/stem.2575
[37] Harrell C R, Jankovic M G, Fellabaum C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors. Tissue Engineering and Regenerative Medicine, 2019, 1084:187-206.
[38] Weiss D J, English K, Krasnodembskaya A, et al. The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Frontiers in Immunology, 2019, 10:1228.
doi: 10.3389/fimmu.2019.01228
[39] Harrell C, Fellabaum C, Jovicic N, et al. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells, 2019, 8(5):467.
doi: 10.3390/cells8050467
[40] Gazdic M, Volarevic V, Arsenijevic N, et al. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Reviews and Reports, 2015, 11(2):280-287.
doi: 10.1007/s12015-014-9583-3
[41] Kusuma G D, Barabadi M, Tan J L, et al. To protect and to preserve: novel preservation strategies for extracellular vesicles. Frontiers in Pharmacology, 2018, 9:1199.
doi: 10.3389/fphar.2018.01199 pmid: 30420804
[42] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 2014, 30:255-289.
doi: 10.1146/annurev-cellbio-101512-122326 pmid: 25288114
[43] Zomer A, Maynard C, Verweij F J, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell, 2015, 161(5):1046-1057.
doi: 10.1016/j.cell.2015.04.042
[44] Wen S W, Sceneay J, Lima L G, et al. The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Research, 2016, 76(23):6816-6827.
doi: 10.1158/0008-5472.CAN-16-0868
[45] Kim M S, Haney M J, Zhao Y L, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(1):195-204.
doi: 10.1016/j.nano.2017.09.011
[46] Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight, 2018, 3(8):e99263.
doi: 10.1172/jci.insight.99263
[47] Mao F, Wu Y B, Tang X D, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed Research International, 2017, 2017:5356760.
[48] Yang T Z, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharmaceutical Research, 2015, 32(6):2003-2014.
doi: 10.1007/s11095-014-1593-y
[49] Cao H M, Yue Z W, Gao H Q, et al. In vivo real-time imaging of extracellular vesicles in liver regeneration via aggregation-induced emission luminogens. ACS Nano, 2019, 13(3):3522-3533.
doi: 10.1021/acsnano.8b09776
[50] Cao H M, Cheng Y Q, Gao H Q, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano, 2020, 14(4):4014-4026.
doi: 10.1021/acsnano.9b08207
[51] Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. Journal of Biotechnology, 2013, 165(2):77-84.
doi: 10.1016/j.jbiotec.2013.03.013 pmid: 23562828
[52] Imai T, Takahashi Y, Nishikawa M, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. Journal of Extracellular Vesicles, 2015, 4:26238.
doi: 10.3402/jev.v4.26238
[53] Charoenviriyakul C, Takahashi Y, Morishita M, et al. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: yield, physicochemical properties, and pharmacokinetics. European Journal of Pharmaceutical Sciences, 2017, 96:316-322.
doi: S0928-0987(16)30432-8 pmid: 27720897
[54] Lai C P, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano, 2014, 8(1):483-494.
doi: 10.1021/nn404945r
[55] Kanada M, Bachmann M H, Hardy J W, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. PNAS, 2015, 112(12):E1433-E1442.
doi: 10.1073/pnas.1418401112
[56] van der Vos K E, Abels E R, Zhang X, et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology, 2016, 18(1):58-69.
doi: 10.1093/neuonc/nov244
[57] Gangadaran P, Li X J, Lee H W, et al. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget, 2017, 8(66):109894-109914.
doi: 10.18632/oncotarget.22493 pmid: 29299117
[58] Morishita M, Takahashi Y, Nishikawa M, et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. Journal of Pharmaceutical Sciences, 2015, 104(2):705-713.
doi: 10.1002/jps.24251 pmid: 25393546
[59] Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. Journal of Controlled Release, 2015, 199:145-155.
doi: 10.1016/j.jconrel.2014.12.013
[60] Faruqu F N, Wang J T W, Xu L Z, et al. Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice - a novel and universal approach. Theranostics, 2019, 9(6):1666-1682.
doi: 10.7150/thno.27891 pmid: 31037130
[61] Hwang D W, Choi H, Jang S C, et al. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99m Tc-HMPAO. Scientific Reports, 2015, 5:15636.
doi: 10.1038/srep15636 pmid: 26497063
[62] Varga Z, Gyurkó I, Pálóczi K, et al. Radiolabeling of extracellular vesicles with 99mTc for quantitative in vivo imaging studies. Cancer Biotherapy and Radiopharmaceuticals, 2016, 31(5):168-173.
[63] Gangadaran P, Hong C M, Oh J M, et al. In vivo non-invasive imaging of radio-labeled exosome-mimetics derived from red blood cells in mice. Frontiers in Pharmacology, 2018, 9:817.
doi: 10.3389/fphar.2018.00817 pmid: 30104975
[64] Betzer O, Perets N, Angel A, et al. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano, 2017, 11(11):10883-10893.
doi: 10.1021/acsnano.7b04495 pmid: 28960957
[65] Lara P, Palma-Florez S, Salas-Huenuleo E, et al. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. Journal of Nanobiotechnology, 2020, 18(1):20.
doi: 10.1186/s12951-020-0573-0
[66] Guo M F, Wu F, Hu G R, et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Science Translational Medicine, 2019, 11(474):eaat5690.
[67] Yuan D F, Zhao Y L, Banks W A, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials, 2017, 11: eaat5690.
[68] Liu C Y, Su C Q. Design strategies and application progress of therapeutic exosomes. Theranostics, 2019, 9(4):1015-1028.
doi: 10.7150/thno.30853
[69] Rahmani A, Saleki K, Javanmehr N, et al. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Research Reviews, 2020, 62:101106.
doi: 10.1016/j.arr.2020.101106
[70] Seo Y, Shin T H, Kim H S. Current strategies to enhance adipose stem cell function: an update. International Journal of Molecular Sciences, 2019, 20(15):3827.
doi: 10.3390/ijms20153827
[71] Pham P, Truong N C, Le P T B, et al. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell and Tissue Banking, 2016, 17(2):289-302.
doi: 10.1007/s10561-015-9541-6
[72] Ribeiro A, Laranjeira P, Mendes S, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research Therapy, 2013, 4(5):125.
doi: 10.1186/scrt336
[73] Valencia J, Blanco B, Yáñez R, et al. Comparative analysis of the immunomodulatory capacities of human bone marrow- and adipose tissue-derived mesenchymal stromal cells from the same donor. Cytotherapy, 2016, 18(10):1297-1311.
doi: 10.1016/j.jcyt.2016.07.006 pmid: 27637760
[74] Zhang Z Y, Niu L Y, Tang X J, et al. Mesenchymal stem cells prevent podocyte injury in lupus-prone B6.MRL-Faslpr mice via polarizing macrophage into an anti-inflammatory phenotype. Nephrology Dialysis Transplantation, 2018, 33(11):2069.
[75] Yang J, Liu X X, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One, 2015, 10(10):e0140551.
doi: 10.1371/journal.pone.0140551
[76] Wu X R, Lan P, Wu X J, et al. P064 Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. Journal of Crohn’s and Colitis, 2020, 14(Supplement 1):S166.
[77] Cao L, Xu H X, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. International Immunopharmacology, 2019, 72:264-274.
doi: S1567-5769(18)31407-3 pmid: 31005036
[78] Yang R L, Huang H M, Cui S J, et al. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b. Cell Death & Disease, 2020, 11(7):603.
[79] Bao C S, Wang B, Yang F B, et al. Blockade of interleukin-7 receptor shapes macrophage alternative activation and promotes functional recovery after spinal cord injury. Neuroscience, 2018, 371:518-527.
doi: 10.1016/j.neuroscience.2017.10.022
[80] Katz G, Pobezinsky L A, Jeurling S, et al. T cell receptor stimulation impairs IL-7 receptor signaling by inducing expression of the microRNA miR-17 to target Janus kinase 1. Science Signaling, 2014, 7(340):ra83.
[81] Park K S, Bandeira E, Shelke G V, et al. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research & Therapy, 2019, 10(1):288.
[82] Ma Z J, Wang Y H, Li Z G, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis. International Journal of Stem Cells, 2019, 12(3):440-448.
doi: 10.15283/ijsc18139
[83] Chang C L, Chen C H, Chiang J Y, et al. Synergistic effect of combined melatonin and adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes on amelioration of dextran sulfate sodium (DSS)-induced acute colitis. American Journal of Translational Research, 2019, 11(5):2706-2724.
pmid: 31217848
[84] 杨少鹏, 张晓岚. 间充质干细胞来源的外泌体在炎症性肠病治疗中的作用机制及应用前景. 中华细胞与干细胞杂志(电子版), 2020, 10(6):368-372.
Yang S P, Zhang X L. Mechanism and application prospect of exosomes derived from mesenchymal stem cells in the treatment of inflammatory bowel disease. Chinese Journal of Cell and Stem Cell (Electronic Edition), 2020, 10(6):368-372.
[85] 晏梓钧, 茹楠, 蔡梦溪, 等. 外泌体改造和修饰研究进展. 解放军医学院学报, 2019, 40(12):1203-1206.
Yan Z J, Ru N, Cai M X, et al. Research advances in modification of exosomes. Academic Journal of Chinese PLA Medical School, 2019, 40(12):1203-1206.
[1] 冯宝琪,冯娇,张苗,刘洋,曹睿,尹涵之,齐凤仙,李子龙,尹守亮. 利用Tn5型转座突变系统筛选高产阿维菌素菌株*[J]. 中国生物工程杂志, 2021, 41(7): 32-41.
[2] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[3] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[6] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[7] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[8] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[9] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[10] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[11] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[12] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[13] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[14] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[15] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.