Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (9): 62-67    DOI: 10.13523/j.cb.20190909
研究报告     
自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *
朱永朝1,**,陶金1,**,任萌萌2,熊燃3,何亚琴1,周瑜1,卢震辉1,杜勇1,杨芝红1,**()
1 宁夏医科大学总医院 银川 750004
2 银川市妇幼保健院 银川 750001
3 深圳精准医疗科技有限公司 深圳 518000
Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α
ZHU Yongzhao1,**,TAO Jin1,**,REN Meng-meng2,XIONG Ran3,HE Ya-qin1,ZHOU Yu1,LU Zhen-hui1,DU Yong1,YANG Zhi-hong1,**()
1 Ningxia Medical University, Yinchuan 750004, China
2 Yinchuan Maternal and Children Health Care Hospital, Yinchuan 750001, China
3 Shenzhen Gentarget Biopharmaceutical Co., Ltd, Shenzhen 518000, China
 全文: PDF(985 KB)   HTML
摘要:

目的: 探讨TNF-α诱导人胎盘胎儿来源间充质干细胞(hfPMSCs)发生凋亡和自噬的作用,以及自噬对细胞凋亡的调控作用。方法: 利用流式细胞术检测无血清培养hfPMSCs中CD73、CD90、CD105、CD14、CD34、CD45的表达;用终浓度 20 μg /L 的TNF-α处理hfPMSCs 24h,以未处理细胞作为对照组。Annexin V/PI双染色检测TNF-α对hfPMSCs凋亡程度的影响;分别提取各组总蛋白,Western blot 检测自噬标志基因 LC3Ⅰ/Ⅱ的表达;利用mRFP-GFP-LC3 腺病毒感染细胞,观察胞内点状聚集形成的情况;利用Atg5干扰慢病毒(si-Atg5)及阴性对照慢病毒(si-NC)感染hfPMSCs,Annexin V/PI双染色检测TNF-α对慢病毒感染后hfPMSCs凋亡程度的影响。结果: 所培养细胞具有典型的MSCs形态,呈CD73 +CD90 +CD105 +/CD14 -CD34 -CD45 -细胞;Annexin V/PI 染色结果显示,TNF-α作用24 h后,hfPMSCs凋亡数和凋亡率均高于对照组(P<0.05);Western blot检测自噬标志蛋白表达结果表明,TNF-α可增加LC3Ⅱ的表达(P<0.05);荧光共聚焦显微境观察到 TNF-α可显著提高细胞中的点状聚集。利用si-Atg5感染细胞,抑制hfPMSCs自噬的发生,与对照慢病毒si-NC感染细胞比较,可显著促进TNF-α诱导hfPMSCs凋亡的发生(P<0.05)。 结论: TNF-α诱导的自噬抑制人胎盘胎儿来源 MSCs凋亡的发生,具有一定的保护性作用。

关键词: 人胎盘间充质干细胞肿瘤坏死因子-α自噬细胞凋亡    
Abstract:

Objective: To explore the effects of TNF-α on apoptosis and autophagy of human placenta fetal derived mesenchymal stem cells (hfPMSCs) and the regulation of autophagy on apoptosis.Methods: The expression of CD73, CD90, CD105, CD14, CD34 and CD45 was identified by flow cytometry analysis for fPMSCs cultured in serum-free medium. hfPMSCs were treated with TNF-α at a final concentration of 20 g /L for 24h. Annexin V/PI double staining assay detected cells apoptosis; Each group of total protein was extracted, the expression of autophagy marker protein LC3 Ⅰ/Ⅱ was tested by Western blot; mRFP-GFP-LC3 adenovirus was used to infect fPMSCs, the formation of the puncta light was observed by confocal fluorescence microscopy; hfPMSCs were infected with Atg5 interfering lentivirus (si-Atg5) and negative control lentivirus (si-NC), and Annexin V/PI double staining was used to detect cells apoptosis.Results: The cultured cells possessed typical MSCs morphology and belong to CD73 +CD90 +CD105 +/ CD14 -CD34 -CD45 - cells. Annexin V/PI staining results showed that after TNF-αtreatment for 24 h, the apoptosis number and rate of hfPMSCs were higher than those in the control group (P<0.05). Compared to untreated group, TNF-α increased the deposition number of LC3 Ⅱ (P<0.05),and induced more aggregation of puncta light in cytoplasm.Compared: with the control group, TNF-αinduced apoptosis of hfPMSCs was significantly elevated in autopahgy inhibition group (P<0.05). Conclusion: TNF-αinduced autophagy can inhibit the apoptosis of hfPMSCs, play an important protective function.

Key words: Human placenta    Mesenchymal stem cells    Tumor necrosis factor-α    Autophagy Apoptosis
收稿日期: 2019-08-23 出版日期: 2019-09-20
ZTFLH:  Q291  
基金资助: * 国家自然科学基金(81560016)
通讯作者: 朱永朝,陶金,杨芝红     E-mail: zhangpac@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱永朝
陶金
任萌萌
熊燃
何亚琴
周瑜
卢震辉
杜勇
杨芝红

引用本文:

朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.

ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α. China Biotechnology, 2019, 39(9): 62-67.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190909        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I9/62

  Fig.1 person placenta fetal source of MSCs morphological observation (phase contrast microscope, ×40)
图2  流式细胞术检测无血清培养人胎盘胎儿来源MSCs表面标志物
图3  TNF-α对人胎盘胎儿来源MSCs凋亡的影响
图4  TNF-α对人胎盘胎儿来源MSCs LC3I/II表达的影响
图5  TNF-α诱导人胎盘胎儿来源MSCs自噬体形成的鉴定
图6  TNF-α诱导的自噬调控人胎盘胎儿来源MSCs凋亡的发生
[1] Wang H Y, Li D R, Zhai Z C , et al. Characterization and therapeutic application of mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells. Theranostics, 2019,9(6):1683-1697.
[2] Jin Q Q, Yuan K Y, Lin W Z , et al. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif Cells Nanomed Biotechnol, 2019,47(1):1577-1584.
[3] Park Y K, Heo S J, Koak J Y , et al. Characterization and differentiation of circulating blood mesenchymal stem cells and the role of phosphatidylinositol 3-kinase in modulating the adhesion . Int J Stem Cells, 2019, 31; 12(2):265-278.
[4] Ayala-Cuellar A P, Kang J H, Jeung E B , et al. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther (Seoul), 2019,27(1):25-33.
[5] Sriram G, Natu V P, Islam I , et al. Innate immune response of human embryonic stem cell-derived fibroblasts and mesenchymal stem cells to periodontopathogens. Stem Cells Int, 2016,2016:8905365.
[6] Johnson V, Webb T, Norman A , et al. Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Sci Rep, 2017,7(1):9575.
[7] Lee S, Choi E, Cha M J , et al. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev, 2015,2015:632902.
[8] Ni X, Ou C, Guo J , et al. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cellsurvival and enhances paracrine effects in vitro. Int J Mol Med, 2017,40(2):418-426.
[9] Chang W, Song B W, Moon J Y , et al. Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol, 2013,28(12):1529-1536.
[10] Dang S, Xu H, Xu C , et al. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy, 2014,10(7):1301-1315.
doi: 10.4161/auto.28771
[11] Dang S P, Yu Zh M, Zhang Ch Y , et al. Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Res Ther, 2015,6:247.
[12] Yang R, Ouyang Y, Li W , et al. Autophagy plays a protective role in tumor necrosis factor-α-induced apoptosis of bone marrow-derived mesenchymal stem cells. Stem Cells Dev, 2016,25(10):788-797.
[13] Wang L T, Ting C H, Yen M L , et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci, 2016,23(1):76.
[14] Squillaro T, Peluso G, Galderisi U . Clinical trials with mesenchymal stem cells: an update. Cell Transplant, 2016,25(5):829-848.
[15] Haque N, Kasim N H, Rahman M T . Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci, 2015,11(3):324-334.
[16] Ma T, Wang X, Jiao Y , et al. Interleukin 17 (IL-17)-induced mesenchymal stem cells prolong the survival of alogeneic skin grafts. Ann Transplant, 2018,23:615-621.
[17] Cheng S, Li X, Jia Z , et al. The inflammatory cytokine TNF-α regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-κB signaling pathway in vitro. J Cell Biochem, 2019,120(8):13664-13679.
[18] Liu Z, Gao L, Wang P , et al. TNF-α induced the enhanced apoptosis of mesenchymal stem cells in ankylosing spondylitis by overexpressing TRAIL-R2. Stem Cells Int, 2017,2017:4521324.
[19] Li X, Du W, Ma F X , et al. High concentrations of TNF-α induce cell death during interactions between human umbilical cord mesenchymal stem cells and peripheral blood mononuclear cell. PLoS One, 2015,10(5):e0128647.
[20] Kim C, Park J M, Song Y , et al. HIF1α-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy. Aging Cell, 2019,18(2):e12909.
[21] Hu C, Zhao L, Wu D , et al. Modulating autophagy in mesenchymal stem cells effectively protects against hypoxia- or ischemia-induced injury. Stem Cell Res Ther, 2019,10(1):120.
[22] Lee J H, Yoon Y M, Han Y S , et al. Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic er-stress conditions by increasing prion protein expression. Cell Prolif, 2019,52(2):e12545.
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[5] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[6] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[7] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[8] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[9] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[10] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[11] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[12] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[13] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[14] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[15] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.