Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 72-79    DOI: 10.13523/j.cb.2009043
综述     
酵母系统表达人表皮生长因子研究进展 *
石鹏程,纪晓俊()
南京工业大学生物与制药工程学院 南京 211806
Advances in Expression of Human Epidermal Growth Factor in Yeast
SHI Peng-cheng,JI Xiao-jun()
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(1635 KB)   HTML
摘要:

人源表皮生长因子是一种从人体内分离出的蛋白质,具有刺激细胞生长的作用,临床用途广泛。但由于天然来源有限,化学合成成本高,利用基因工程技术生产人表皮生长因子具有很好的前景。酵母系统作为一种典型的真核表达系统,在生产异源蛋白时能进行翻译后修饰,如糖基化、形成二硫键等,并能有效地将重组蛋白分泌到细胞外,有益于下游分离提取,在生产重组人表皮生长因子的研究中备受青睐。综述了利用酵母系统表达人表皮生长因子的研究进展,包括各种酵母表达系统在其中的应用,并分别比较其优势和劣势,在此基础上对未来的研究重点进行展望。

关键词: 人表皮生长因子酿酒酵母巴斯德毕赤酵母解脂耶氏酵母表达策略    
Abstract:

Human epidermal growth factor (hEGF) is a kind of protein isolated from the human body. It can stimulate the cell growth and thus has a wide range of clinical applications. The use of genetic engineering to produce hEGF has great economic prospects due to its limited natural source and high cost of chemical synthesis. Yeast expression system, as a typical eukaryotic expression system, can perform post-translational modifications, such as glycosylation, disulfide bond formation, etc., and can effectively secrete the proteins outside of the cell so that the recombinant protein can be separated from the extracellular medium easily. Therefore, yeast is especially favored in the research of producing recombinant hEGF. This article reviews the progress of producing hEGF in various yeast expression systems, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, etc., and on this base, their pros and cons were compared. The future prospects of using yeast expression to produce hEGF are discussed in light of the current progress, challenges, and trends in this field. Guidelines for future studies are finally proposed.

Key words: Human epidermal growth factor    Saccharomyces cerevisiae    Pichia pastoris    Yarrowia lipolytica    Expression strategy
收稿日期: 2020-09-27 出版日期: 2021-02-09
ZTFLH:  Q819  
基金资助: * 国家优秀青年科学基金(21922806);江苏省“六大人才高峰”计划(2018-SWYY-047)
通讯作者: 纪晓俊     E-mail: xiaojunji@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石鹏程
纪晓俊

引用本文:

石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.

SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast. China Biotechnology, 2021, 41(1): 72-79.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2009043        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/72

图1  人表皮生长因子的一级结构
信号序列 hEGF产量(mg/L)
α-factor prepro 3.17
共有序列 0.59
共有序列(转化酶突变) 0.52
共有序列+6aa(KEX2蛋白酶切割位点) 0.57
转化酶突变+6aa(KEX2蛋白酶切割位点) 0.54
共有序列+19aa(无Asn连接糖基化位点) 3.39
共有序列+19aa(有Asn连接糖基化位点) 3.53
表1  合成信号序列的分泌效率[48]
宿主系统 方法 载体 效果 hEGF产量
(mg/mL)
参考
Saccharomyces
cerevisiae
构建了一个包含酵母GAPDH启动子、合成hEGF基因和酵母ADH-1终止子的质粒 pYEGF-2 在胞内表达出有活性的EGF 30.0 Urdea[44]
在hEGF基因的上游插入了酿酒酵母来源的α因子前序 pYaEGF-23 能将超过90%成熟的hEGF分泌到培养基中 4.0 Brake[45]
设计不同的前导序列 pSW6 提高了酿酒酵母中hEGF的分泌 3.2 Clements[48]
研究了hEGF的表达动力学 pYaEGF-25 筛选合适的培养基 13.0 Coppella[50]
对生理变量,培养基和生物反应器操作模式进行了综合研究 - 提高hEGF发酵过程的生产率 259.2 Valdes [51]
Pichia pastoris 人工合成表皮生长因子在甲基营养型酵母中的表达 Puc19-KαEGF51及 pAO815-EGF51 分泌完好生物活性和正确物理性质的hEGF 100 黄秉仁[52]
优化毕赤酵母表达hEGF时的培养条件 pPIC9K 分析培养基、甲醇浓度、pH和温度对生产的影响 2.27 Eissazadeh[57]
在毕赤酵母X33中表达hEGF并纯化 pPICZa A 成功诱导蛋白分泌并纯化 5.8 高云鹏[65]
Hansenula
polymorpha
在多形汉逊酵母中表达hEGF基因 PMOX -EGF 敲除KEX1基因能减少hEGF的C端水解 2.5 Heo[59]
构建动力学模型,研究细胞生长和hEGF生产的pH依赖性 PMOX 在分批补料培养的诱导期中切换pH值可提高产量 80.0 Moon[60]
Yarrowia
lipolytica
hEGF基因与碱性胞外蛋白酶的前导肽和proⅠ融合表达 pXEGF1 细胞分泌酸性蛋白酶使产量降低 0.1 Hamsa[63]
表2  人表皮生长因子在酵母系统中的表达
[1] Cohen S. Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proceedings of the National Academy of Sciences of the United States of America, 1960,46(3):302-311.
[2] Gregory H. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature, 1975,257(5524):325-327.
[3] Bell G I, Fong N M, Stempien M M, et al. Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Research, 1986,14(21):8427-8446.
pmid: 3491360
[4] 曾嵘, 邵晓霞, 夏其昌. 人表皮生长因子肽谱及一级结构的质谱法分析. 生物化学与生物物理学报(英文), 1999,31(1):31-36.
Zeng R, Shao X X, Xia Q C. Peptide mapping and primary structure analysis of hEGF by mass spectrometry. Acta Biochimica et Biophysica Sinica, 1999,31(1):31-36.
[5] Arturson G. Epidermal growth factor in the healing of corneal wounds, epidermal wounds and partial-thickness scalds: a controlled animal study. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1984,18(1):33-37.
[6] Jahovic N, Guzel E, Arbak S, et al. The healing-promoting effect of saliva on skin burn is mediated by epidermal growth factor (EGF): role of the neutrophils. Burns, 2004,30(6):531-538.
[7] Peng H, Wen T C, Tanaka J, et al. Epidermal growth factor protects neuronal cells in vivo and in vitro against transient forebrain ischemia- and free radical-induced injuries. Journal of Cerebral Blood Flow and Metabolism, 1998,18(4):349-360.
pmid: 9538899
[8] Chauvin K, Bratton C, Parkins C, et al. Healing large tympanic membrane perforations using hyaluronic acid, basic fibroblast growth factor, and epidermal growth factor. Otolaryngology-Head and Neck Surgery, 1999,121(1):43-47.
[9] Inoue M, Katakami C. The effect of hyaluronic acid on corneal epithelial cell proliferation. Investigative Ophthalmology & Visual Science, 1993,34(7):2313-2315.
[10] Berlanga J, Caballero M E, Ramirez D, et al. Epidermal growth factor protects against carbon tetrachloride-induced hepatic injury. Clinical Science, 1998,94(3):219-223.
[11] Jones D E, Tranpatterson R, Cui D, et al. Epidermal growth factor secreted from the salivary gland is necessary for liver regeneration. American Journal of Physiology-gastrointestinal and Liver Physiology, 1995,268(5):872-878.
[12] Wong W K R, Ng K L, Lam C C, et al. Review article: reasons for underrating the potential of human epidermal growth factor in medical applications. Journal of Analytical & Pharmaceutical Research, 2017,4(2):00101.
[13] Schouest J M, Luu T K, Moy R L, et al. Improved texture and appearance of human facial skin after daily topical application of barley produced, synthetic, human-like epidermal growth factor (EGF) serum. Journal of Drugs in Dermatology, 2012,11(5):613-620.
[14] Aldag C, Teixeira D N, Leventhal P S, et al. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Clinical, Cosmetic and Investigational Dermatology, 2016,9:411-419.
[15] Ptitsyn L R, Altman I B. Extracellular production of recombinant human epidermal growth factor (hEGF) in Escherichia coli cells. Bioorganicheskaia Khimiia, 1999,25(12):923-929.
[16] Lam K, Chow K C, Wong W K, et al. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. Journal of Biotechnology, 1998,63(3):167-177.
pmid: 9803531
[17] Topczewska J M, Bolewska K. Cloning and expression of the hEGF gene in Saccharomyces cerevisiae. Acta Biochimica Polonica, 1993,40(1):4-7.
pmid: 8372563
[18] Yu W, Chen J, Zhao X L, et al. Expression of polyhedrin-hEGF fusion protein in cultured cells and larvae of Bombyx mori. African Journal of Biotechnology, 2006,5(11):1034-1040.
[19] Gellissen G, Kunze G, Gaillardin C, et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica- A comparison. Fems Yeast Research, 2005,5(11):1079-1096.
pmid: 16144775
[20] Goffeau A, Barrell B, Bussey H, et al. Life with 6 000 genes. Science, 1996,274(5287):546-567.
[21] Shen M W, Fang F, Sandmeyer S, et al. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast, 2012,29(12):495-503.
doi: 10.1002/yea.2930 pmid: 23166051
[22] Siddiqui M S, Thodey K, Trenchard I, et al. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. Fems Yeast Research, 2012,12(2):144-170.
[23] Galao R P, Scheller N, Alvesrodrigues I, et al. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microbial Cell Factories, 2007,6(1):32-32.
[24] Petranovic D, Nielsen J. Can yeast systems biology contribute to the understanding of human disease. Trends in Biotechnology, 2008,26(11):584-590.
pmid: 18801589
[25] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012,30(5):1108-1118.
doi: 10.1016/j.biotechadv.2011.09.011 pmid: 21964262
[26] Huang C, Lowe A J, Batt C A, et al. Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Applied Microbiology and Biotechnology, 2010,87(2):401-410.
[27] Kim H, Yoo S J, Kang H A, et al. Yeast synthetic biology for the production of recombinant therapeutic proteins. Fems Yeast Research, 2014,15(1):1-16.
doi: 10.1111/1567-1364.12171 pmid: 24903193
[28] Ogata K, Nishikawa H, Ohsugi M, et al. A yeast capable of utilizing methanol. Agricultural and Biological Chemistry, 1969,33(10):1519-1520.
[29] Cregg J M, Barringer K J, Hessler A Y, et al. Pichia pastoris as a host system for transformations. Molecular and Cellular Biology, 1985,5(12):3376-3385.
[30] Grinna L S, Tschopp J F. Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast, 1989,5(2):107-115.
doi: 10.1002/yea.320050206 pmid: 2711751
[31] Choi B, Bobrowicz P, Davidson R C, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(9):5022-5027.
[32] Hamilton S R, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science, 2003,301(5637):1244-1246.
[33] Vervecken W, Kaigorodov V, Callewaert N, et al. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Applied and Environmental Microbiology, 2004,70(5):2639-2646.
[34] Van Dijk R, Faber K N, Kiel J A, et al. The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme and Microbial Technology, 2000,26(9):793-800.
[35] Gellissen G, Hollenberg C P. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis: a review. Gene, 1997,190(1):87-97.
[36] Gellissen G, Kunze G, Gaillardin C, et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica- A comparison. Fems Yeast Research, 2005,5(11):1079-1096.
[37] Gellissen G. Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology, 2000,54(6):741-750.
doi: 10.1007/s002530000464 pmid: 11152064
[38] Veenhuis M, Kram A M, Kunau W H, et al. Excessive membrane development following exposure of the methylotrophic yeast Hansenula polymorpha to oleic acid-containing media. Yeast, 1990,6(6):511-519.
[39] Baerends R J, Faber K N, Kram A M, et al. A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. Journal of Biological Chemistry, 2000,275(14):9986-9995.
[40] Pfizer Inc. Process for transformation of Yarrowia lipolytica: US4880741.1989-11-14[2020-9-24]. http://njtech.patsev.com/search/patentDetail.
[41] Institute National de la Recherche Agronomique. Transformation vector for yeast Yarrowia lipolytica, transformation process and transformed yeast: EP0166659A2. 1986-1-2[2020-9-24]. http://njtech.patsev.com/search/patentDetail.
[42] De Pourcq K, Vervecken W, Dewerte I, et al. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microbial Cell Factories, 2012,11(1):53-65.
[43] De Pourcq K, Tiels P, Van Hecke A, et al. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One, 2012,7(6):e39976.
[44] Urdea M S, Merryweather J P, Mullenbach G T, et al. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast. Proceedings of the National Academy of Sciences, 1983,80(24):7461-7465.
[45] Brake A J, Merryweather J P, Coit D G, et al. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 1984,81(15):4642-4646.
[46] George-Nascimento C, Gyenes A, Halloran S M, et al. Characterization of recombinant human epidermal growth factor produced in yeast. Biochemistry, 1988,27(2):797-802.
[47] 黄秉仁, 张岱, 迟来顺, 等. 人表皮生长因子基因在酵母系统中的表达. 中国医学科学院学报, 1989,(5):331-337.
Huang B R, Zhang D, Chi L S, et al. Human epidermal growth factor gene is expressed in Saccharomyces cerevosoae. Acta Academiae Medicinae Sinicae, 1989, (5):331-337.
[48] Clements J M, Catlin G, Price M J, et al. Secretion of human epidermal growth factor from Saccharomyces cerevisiae using synthetic leader sequences. Gene, 1991,106(2):267-271.
[49] Caplan S, Green R, Rocco J W, et al. Glycosylation and structure of the yeast MF alpha 1 alpha-factor precursor is important for efficient transport through the secretory pathway. Journal of Bacteriology, 1991,173(2):627-635.
[50] Coppella S J, Dhurjati P. A mathematical description of recombinant yeast. Biotechnology and Bioengineering, 1990,35(4):356-374.
pmid: 18592530
[51] Valdes J, Mantilla E, Marquez G, et al. Physiological study in Saccharomyces cerevisiae for overproduction of a homogeneous human epidermal growth factor molecule. Biotecnologia Aplicada, 2009,26(2):166-167.
[52] 黄秉仁, 蔡良琬, 廖洪涛, 等. 人工合成表皮生长因子基因在甲基营养型酵母中的高效表达. 中国生物化学与分子生物学报, 1998,(5):46-51.
Huang B R, Cai L W, Liao H T, et al. High level expression of chemically synthesized human epidermal growth factor gene in the yeast Pichia pastoris. Chinese Journal of Biochemistry Molecular Biology, 1998, (5):46-51.
[53] 黄秉仁, 蔡良婉, 王欣, 等. 甲基营养型酵母系统表达的重组人表皮生长因子的纯化及其性质. 中国医学科学院学报, 2001,23(2):106-110.
Huang B R, Cai L W, Wang X, et al. Purification of recombinant hEGF expressed in yeast Pichia pastoris and the study on its characters. Acta Academiae Medicinae Sinicae, 2001,23(2):106-110.
[54] Mullhaupt B, Feren A, Fodor E J, et al. Liver expression of epidermal growth factor RNA. Rapid increases in immediate-early phase of liver regeneration. Journal of Biological Chemistry, 1994,269(31):19667-19670.
[55] Khan M, Khan F, Ahmad N, et al. Expression line approach to recombinant human epidermal growth factor into the yeast, Pichia pastoris from Huh-7 cell line. Molecular Biology Reports, 2014,41(3):1445-1451.
doi: 10.1007/s11033-013-2989-1 pmid: 24413989
[56] Khan M, Ahmed N, Khan M I, et al. Bioactivity studies of Huh-7 cells derived human epidermal growth factor expressed in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 2017,81(6):1114-1119.
[57] Eissazadeh S, Moeini H, Dezfouli M G, et al. Production of recombinant human epidermal growth factor in Pichia pastoris. Brazilian Journal of Microbiology, 2017,48(2):286-293.
doi: 10.1016/j.bjm.2016.10.017 pmid: 27998673
[58] 熊振宇, 李晓瑾, 李志鹏. 重组人表皮生长因子在毕赤酵母中的表达与纯化及其复合可溶性微针的制备. 生物技术通讯, 2019(4):516-522.
Xiong Z Y, Li X J, Li Z P. Expression and purification of recombinant human epidermal growth factor in Pichia pastoris and preparation of composite soluble microacupuncture. Letters in Biotechnology, 2019(4):516-522.
[59] Heo J, Won H S, Kang H A, et al. Purification of recombinant human epidermal growth factor secreted from the methylotrophic yeast Hansenula polymorpha. Protein Expression and Purification, 2002,24(1):117-122.
[60] Moon H, Kim H D, Rhee S, et al. Optimal strategy of pH control in the production of recombinant human epidermal growth factor by Hansenula polymorpha. Process Biochemistry, 2002,38(4):487-495.
[61] Bishop P D, Teller D C, Smith R A, et al. Expression, purification, and characterization of human factor XIII in Saccharomyces cerevisiae. Biochemistry, 1990,29(7):1861-1869.
pmid: 2184890
[62] Heslot H. Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica. Advances in Biochemical Engineering/Biotechnology, 1990,43:43-73.
[63] Hamsa P V, Kachroo P, Chattoo B B, et al. Production and secretion of biologically active human epidermal growth factor in Yarrowia lipolytica. Current Genetics, 1998,33(3):231-237.
[64] Madzak C, Gaillardin C, Beckerich J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology, 2004,109(1-2):63-81.
[65] 高云鹏, 赵雨, 王新宇, 等. 重组人表皮生长因子在毕赤酵母X33中的构建、表达和纯化. 科学技术与工程, 2018,18(17):141-144.
Gao Y P, Zhao Y, Wang X Y, et al. Construction, expression and purification of recombinant human epidermal growth factor in Pichia pastoris X33. Science Technology and Engineering, 2018,18(17):141-144.
[1] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[2] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[3] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[4] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[5] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[6] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[7] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[8] 陈凯丽,张付涛,王东月,张倩,李运清. 解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *[J]. 中国生物工程杂志, 2019, 39(3): 29-36.
[9] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[10] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[11] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[12] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[13] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[14] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[15] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.