Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (10): 1-9    DOI: 10.13523/j.cb.2006036
研究报告     
UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *
章小毛1,郭敬涵1,洪解放2,陆海燕1,丁娟娟1,邹少兰1,***(),范寰3,***()
1 天津大学化工学院 系统生物工程教育部重点实验室 天津 300072
2 天津大学石化中心 天津 300072
3 天津市畜牧兽医研究所 天津 300381
Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene
ZHANG Xiao-mao1,GUO Jing-han1,HONG Jie-fang2,LU Hai-yan1,DING Juan-juan1,ZOU Shao-lan1,***(),FAN Huan3,***()
1 School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
2 Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
3 Tianjin Animal Science and Veterinary Research Institute, Tianjin 300381, China
 全文: PDF(5845 KB)   HTML
摘要:

目的: 未折叠蛋白质反应UPR是酵母最重要蛋白质质量控制机制之一,研究UPR响应规律有助于优化异源蛋白分泌途径合成和应对酸醇等胁迫因子的细胞自我保护。方法: 选择实验室菌株W303-1A和工业菌株An-a,以UPRE启动子控制下的Lac Z为报告基因,利用CRISPR/Cas9技术构建得到指示菌株W303-1A (leu 2::UPRE-lac Z)和An-a (leu 2::UPRE- lac Z),分别简称WZ和AZ。结果: 生长曲线测定显示WZ和AZ与亲本菌株的生长接近;添加下述试剂孵育4h后测定β-半乳糖苷酶酶活:1μg/ml衣霉素、8%(v/v)乙醇、0.3%(v/v)乙酸、5%(v/v)乙醇+0.1%(v/v)乙酸;菌株AZ的比酶活分别是对照值的8.2、26.4、1.1和7.9倍,而菌株WZ则分别为12.6、2.4、1.0和1.0倍;进一步以YEplac195为载体表达β-葡萄糖苷酶,AZ和WZ转化子在2%纤维二糖中生长24h的β-葡萄糖苷酶酶活值分别为0.35和6.12U/ml,相应的LacZ则分别为对照值的3.1和5.4倍。结论: 两个菌株显示了在抑制物和异源蛋白表达UPR响应和调控能力上的显著差异,为其改造利用提供了方向;研究也为分析抑制物耐受性和异源蛋白表达关键制约因素、优化酵母ER和UPR信号通路的调控奠定了初步方法基础。

关键词: 酿酒酵母UPRE-lacZUPR响应抑制物分泌表达    
Abstract:

Objective: Unfolded Protein Response (UPR) is one of the most important protein quality control mechanisms, the information about UPR with help to optimize heterologous protein synthesis by secretory pathway and cell self protection from inhibitory substances such as acid and ethanol.Methods: The indicating strains, W303- 1A (leu 2::UPRE-lac Z) and An-a (leu 2::UPRE-lac Z), abbreviated as WZ and AZ, respectively, were first constructed by CRISPR/Cas9 technology and using UPRE-lac Z as a reporter.Results: The growth curve test showed that there was no significant difference between two strains and their host ones. The β-galactosidase activity was assayed at 4 h of incubation time after adding four reagents into media as followings, 1 μg/ml tunicamycin, 8%(v/v) ethanol, 0.3%(v/v) acetic acid, 5% (v/v) ethanol + 0.1%(v/v)acetic acid, respectively. The values of strain AZ were 8.2, 26.4, 1.1 and 7.9 times of that of blank control, respectively, while the results of strain WZ were 12.6, 2.4, 1.0 and 1.0 times, respectively. Further β-glucosidase was expressed by YEplac195 vector into strain AZ and WZ cell. The assay results after 24 h cultivation in 2% cellobiose media showed that the β-glucosidase activities were 0.35 and 6.12 U/ml, respectively, and the responding LacZ values were 3.1 and 5.4 times of that of blank control, respectively.Conclusions: There exists significant difference on the UPR response spectrum between two strains, which also implies their divergent direction and strategy of genetic modification. This study lays the foundation of analytical methods for investigating the key limiting factors in cell inhibitor tolerance and heterologous protein expression in order to make better use of yeast ER and UPR pathway engineering.

Key words: Yeast    UPRE-lacZ    UPR response    Inhibitor tolerance    Secretory expression
收稿日期: 2020-06-22 出版日期: 2020-11-10
ZTFLH:  Q291  
基金资助: * 国家自然科学基金(31470208);天津市科技计划(18YFZCNC01240);国家重点研发计划(2019YFA0905600)
通讯作者: 邹少兰,范寰     E-mail: slzhou@tju.edu.cn;fanhuan1971@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
章小毛
郭敬涵
洪解放
陆海燕
丁娟娟
邹少兰
范寰

引用本文:

章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.

ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene. China Biotechnology, 2020, 40(10): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006036        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I10/1

Strains or plasmids Characteristics Sources
Escherichia coli
DH5α F-recA1 endA1 hsdR17 [rK-mK-] supE44 λ-thi-1 gyrA96 relA1 Our lab
yeast strains
W303-1A MATa or MATɑ leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 Our lab
WC W303-1A (leu 2∷UPRE-mCherry) Our lab
An-a MATa ura 3,筛选自工业菌株 Our lab
W303-1A(YCplac33-Cas9) 质粒YCplac33-Cas 9转化得到 This study
WZ W303-1A (leu 2∷ UPRE-lac Z) This study
An-a(YCplac33-Cas9) 质粒YCplac33-Cas9转化得到 This study
AZ An-a (leu 2∷UPRE-lac Z) This study
WZ(YEplac195) 质粒YEplac195即ATCC87589转化得到 This study
WZ(BG) 质粒BG转化得到 This study
AZ(YEplac195) 质粒YEplac195即ATCC87589转化得到 This study
AZ(BG) 质粒BG转化得到 This study
plasmids
pRS42H-gRNA Ampr, hph NT1, crRNA Our lab
YCplac33-Cas9 Ampr, URA 3, Cas 9, 5 603 bp Our lab
BG YEplac195- Ptpi-xyn2s-Aa BGL1-TadhI, β- glucosidase expressing vector Our lab [19]
pRS42H-gLEU2 Ampr, hph NT1, crRNA, 20 bp guide for LEU 2 gene This study
表1  实验所用菌株和质粒
Primers Sequences (5'→3') Purpose Size
P1 TATTTACTTTGGTAAGAGAAGTTTTAGAGCTAGAAA
TAGC
扩增gRNA序列 (20 bp),构建pRS-gRNA-LEU2用 6 528bp
P2 TTCTCTTACCAAAGTAAATAGATCATTTATCTTTCAC
TGC
P3 CACAATTTGCTAAAGGTACT 扩增donor DNA中左同源臂(H1+UPRE)片段,命名为PCR1 364bp
P4 TCATGGTCATTATTAATTTAGTGTGTGT
P5 TAAATTAATAATGACCATGATTACGGATTC 扩增LacZ ORF片段,片段命名为PCR3 3 095bp
P6 CGCCGGTCCGTTATTTTTGACACCAGACC
P7 TCAAAAATAACGGACCGGCGCGCCACTT 扩增 donor DNA中右同源臂(TadhI+ H2) 片段,命名为PCR2 302bp
P8 CTTGTGATTCTTTGCACTTC
P9 TGACCAAGTTCGTAAATCTA 鉴定引物对 795bp(control strain)
P10 CCATCTCCACAATAGGCATA 4 327bp(indicator strain)
表2  实验所用引物
图1  PCR片段琼脂糖凝胶电泳图谱和供体DNA片段示意图
图2  平板菌落显色(左W303-1A宿主,右An-a宿主)
图3  PCR鉴定产物琼脂糖凝胶电泳(左W303-1A宿主,右An-a宿主)
图4  四个菌株的生长曲线
图5  不同添加物培养基中限氧培养4 h时的OD600值和β-半乳糖苷酶酶活
图6  菌株WZ和AZ YPC中生长24 h时的酶活
[1] Jouhten P, Boruta T, Andrejev S, et al. Yeast metabolic chassis designs for diverse biotechnological products. Scientific Reports, 2016,6:29694.
doi: 10.1038/srep29694 pmid: 27430744
[2] Majidian P, Tabatabaei M, Zeinolabedini M, et al. Metabolic engineering of microorganisms for biofuel production. Renewable & Sustainable Energy Reviews, 2018,82:3863-3885.
[3] Young C L, Robinson A S. Protein folding and secretion: mechanistic insights advancing recombinant protein production in S.cerevisiae. Curr Opin Biotechnol, 2014,30:168-177.
doi: 10.1016/j.copbio.2014.06.018 pmid: 25032908
[4] Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. Rsc Adv, 2015,5:86665-86674.
[5] Baghban R, Farajnia S, Rajabibazl M, et al. Yeast expression systems: overview and recent advances. Molecular Biotechnology, 2019,61:365-384.
doi: 10.1007/s12033-019-00164-8 pmid: 30805909
[6] Davison S A, Haan R, Zyl W H. Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 2020, doi: 10.1007/s00253-020-10602-2.
doi: 10.1007/s00253-020-10602-2 pmid: 33097965
[7] R.E.达尔贝, G.范海列主编, 万平, 张彦琼译. 蛋白质定向、转运和转位. 北京: 科学出版社, 2009.
R.E. Dallbey, Editor-in-chief; translated by Wan P, Zhang Y Q. Protein targeting, transport and translocation. Beijing Science Press, 2009.
[8] Feizi A, Österlund T, Petranovic D, et al. Genome-scale modeling of the protein secretory machinery in yeast. PLoS One. 2013,8(5):e63284.
doi: 10.1371/journal.pone.0063284 pmid: 23667601
[9] 赵运英, 王頔, 袁凡, 等. 酿酒酵母细胞中内质网应激与未折叠蛋白反应的研究进展. 微生物学杂志, 2017,37(2):98-106.
Zhao Y Y, Wang Y, Yuan F, et al. Advances in endoplasmic reticulum stress and unfolded protein response in Saccharomyces cereviscerae. Microbiology, 2017,37(2):98-106.
[10] 刘宝琴, 王华芹. 内质网应激与未折叠蛋白反应的研究进展. 中华肿瘤防治杂志, 2010,17(11):869-872.
Liu B Q, Wang H Q. Endoplasmic reticulum and unfolded protein response. Chin J Cancer Prev Treat, 2010,17(11):869-872.
[11] Schröder M. Engineering eukaryotic protein factories. Biotechnol Lett, 2008,30(2):187-196.
doi: 10.1007/s10529-007-9524-1 pmid: 17885737
[12] Sheng J Y, Flick H, Feng X Y. Systematic optimization of protein secretory pathways in Saccharomyces cerevisiae to increase expression of hepatitis B small antigen. Frontiers in Microbiology, 2017,8, doi: 10.3389/fmicb.2017.00875.
doi: 10.3389/fmicb.2017.00875 pmid: 29387048
[13] Tang H T, Song M H, He Y, et al. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae, Biotechnology for Biofuels, 2017,10:53, doi: 10.1186/s13068-017-0738-8.
doi: 10.1186/s13068-017-0738-8 pmid: 28261326
[14] Haan R, Rensburg E, Rose S H, et al. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol, 2015,33:32-38.
doi: 10.1016/j.copbio.2014.10.003 pmid: 25445545
[15] De Klerk C, Fosso-Kankeu E, Du Plessis L, et al. Assessment of the viability of Saccharomyces cerevisiae in response to synergetic inhibition during bioethanol production. Current Science, 2018,115(6):1124-1132.
[16] Davison, Steffi A, Den H, et al. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology, 2016,100(18):8241-8254.
doi: 10.1007/s00253-016-7735-x pmid: 27470141
[17] Kawazoe N, Kimata Y, Izawa S. Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae. Frontiers in Microbiology, 2017,8:1192. doi: 10.3389/fmicb.2017.01192.
doi: 10.3389/fmicb.2017.01192 pmid: 28702017
[18] Navarro-Tapia E, Querol A, Pérez-Torrado R. Membrane fluidification by ethanol stress activates unfolded protein response in yeasts. Microbial Biotechnology, 2018,11(3):465-475.
doi: 10.1111/1751-7915.13032 pmid: 29469174
[19] Wang G Q, Liu C, Hong J F, et al. Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without beta-glucosidase expression. Bioresource Technology, 2013,142:154-161.
doi: 10.1016/j.biortech.2013.05.033 pmid: 23735797
[20] 陆海燕, 李佳蔓, 孙思凡, 等. CRISPR-Cas9系统介导的工业酵母营养缺陷型菌株构建. 中国生物工程杂志, 2019,39(10):67-74.
Lu H Y, Li J M, Sun S F, et al. Construction of an auxotrophic mutant from an industrial Saccharomyces cerevisiae strain by CRISPR/Cas 9 system. China Biotechnology, 2019,39(10):67-74.
[21] 安伯格等编著, 霍克克主译. 酵母遗传学方法实验指南.第二版. 北京: 科学出版社, 2009.
Amberg D C, et al. compiled, Huo K K, translater-in-chief. Experimental guidelines on yeast genetic methods. 2nd edition. Beijing: Science Press, 2009.
[22] Ding J J, Liang G H, Zhang K, et al. Extra metabolic burden by displaying over secreting: growth, fermentation and enzymatic activity in cellobiose of recombinant yeast expressing β-glucosidase. Bioresour Technol, 2018,254:107-114.
doi: 10.1016/j.biortech.2017.12.030 pmid: 29413910
[23] Cox J S, Shamu C E, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993,73:1197-1206.
doi: 10.1016/0092-8674(93)90648-a pmid: 8513503
[24] Carlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR- Cas systems. Nucleic Acids Research, 2013,41(7):4336-4343.
doi: 10.1093/nar/gkt135 pmid: 23460208
[25] Bao J C, Huang M T, Dina P, et al. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2017, 83 (14), Article Number: UNSP e03400-e03416.
doi: 10.1128/AEM.03400-16 pmid: 28476767
[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[6] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[7] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[10] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[11] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[12] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[13] 徐一帆, 刘明秋. 非限制性内切核酸酶Sma的表达纯化工艺及性能研究[J]. 中国生物工程杂志, 2017, 37(11): 89-93.
[14] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[15] 陈丹, 郭玉争, 班靖洋, 李璐, 王维龙, 李鼎锋, 刘勇. 汉逊酵母重组表达的人胃蛋白酶原Ⅱ校准品研制[J]. 中国生物工程杂志, 2016, 36(9): 38-46.