Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 41-49    DOI: 10.13523/j.cb.20180806
技术与方法     
解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *
王艺颖,程海荣()
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis
Yi-ying WANG,Hai-rong CHENG()
School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1633 KB)   HTML
摘要:

乳糖是婴幼儿获取能量的重要碳源之一,但乳糖需要在乳糖酶的作用下水解成半乳糖与葡萄糖后才能被吸收。缺少乳糖分解酶的婴幼儿在摄入含乳糖的食品后,未被消化的乳糖会直接进入大肠,刺激大肠蠕动加快,造成一系列不适应症状即乳糖不耐症,我国属于乳糖不耐症高发国家。因此,解决乳糖的体外水解问题对减轻该症状有重要的意义。研究通过将β-半乳糖苷酶(也称为乳糖水解酶)表面展示在食品安全微生物解脂耶氏酵母(Yarrowia lipolytica)细胞表面,通过培养获得该酵母,然后直接利用酵母细胞来水解乳糖生成半乳糖与葡萄糖。采用该工程酵母细胞(HCY10),能在24小时内完全水解50g/L的乳糖,生成半乳糖与葡萄糖。该方法具有高效、简便的优点,能为乳糖的高效水解提供一条新的途径。

关键词: 乳糖β-半乳糖苷酶乳糖水解酶解脂耶氏酵母酵母表面展示技术    
Abstract:

Lactose is one of the important carbon sources for infants to obtain energy, but lactose needs to be hydrolyzed by enzyme to galactose and glucose before being absorbed. Infants and young children lacking lactose hydrolase can fall in lactose intolerance when consuming lactose-containing food. Lactose intolerance is a symptom of high incidence in China. Therefore, lactose hydrolysis with high efficiency in vitro is of great importance to alleviate the symptoms. The lactose hydrolase (also known as β-galactosidase) was displayed on the cell surface of the food-satefy-grade yeast Yarrowia lipolytica, and the engineered yeast cells are used directly to hydrolyze lactose to produce galactose and glucose. The engineered yeast cell (HCY10) can completely hydrolyze 50g/L lactose in 24 hours to produce galactose and glucose. The method has the advantages of high efficiency and simplicity, and it can provide an alternative solution for the efficient lactose hydrolysis in vitro.

Key words: Lactose    β-galactosidase;    Lactose hydrolase    Yarrowia lipolytica    Yeast surface display technology
收稿日期: 2018-03-08 出版日期: 2018-09-11
ZTFLH:  Q819  
基金资助: 国家自然科学基金(21661140002)
通讯作者: 程海荣     E-mail: chrqrq@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王艺颖
程海荣

引用本文:

王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.

Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis. China Biotechnology, 2018, 38(8): 41-49.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180806        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/41

图1  含来自米曲霉112菌株乳糖水解酶基因的表面展示质粒
图2  在YNLHX平板上生长的酵母转化子
图3  Y.lipolytica转化子的分子鉴定
图4  不同的酵母转化子转化5%乳糖的HPLC 检测结果
图5  20个深蓝色转化子乳糖水解酶活性比较
图6  HCY10转化子水解不同浓度乳糖的效率
图7  HCY10转化子与对照Y.lipolytica CGMCC7326菌株合成赤藓糖醇的性能比较
[1] Zhao Q Q, Liu F, Hou Z W , et al. High level production of β-galactosidase exhibiting excellent milk-lactose degradation ability from Aspergillus oryzae by codon and fermentation optimization. Applied Biochemistry and Biotechnology, 2014,172(6):2787-2799.
doi: 10.1007/s12010-013-0684-2
[2] 何梅 . 乳糖酶缺乏和乳糖不耐受. 环境卫生学杂志, 1999,26(6):339-342.
He M . Lactase deficiency and lactose intolerance. Journal of Environmental Hygiene, 1999,26(6):339-342.
[3] 吴晖, 牛晨艳, 黄巍峰 , 等. 乳糖不耐受症的现状及解决方法. 现代食品科技, 2006,22(1):152-155.
Wu H, Niu C Y, Huang W F , et al. The actuality and solution of lactose intolerance. Modern Food Science and Technology, 2006,22(1):152-155.
[4] Heyman M B . Lactose intolerance in infants, children, and adolescents. Pediatrics, 2006,118(3):1279-1286.
doi: 10.1542/peds.2006-1721 pmid: 16951027
[5] 王雅男, 王康才, 李同根 , 等. 黄蜀葵花器官中β-半乳糖苷酶的提取纯化和酶学特性研究. 江西农业学报, 2011,23(3):126-128.
Wang Y N, Wang K C, Li T G , et al. Purification of β-galactosidase from flowers of Abelmoschus manihot and its characteristics. Acta Agriculture Jiangxi, 2011,23(3):126-128.
[6] Torres D P, Gon?alves M D, Teixeira J A , et al. Galactooligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 2010,9(5):438-454.
doi: 10.1111/crfs.2010.9.issue-5
[7] 杨竞成 . 酶法水解乳糖生成D-半乳糖的工艺条件优化. 大连: 大连工业大学, 2016.
Yang J C . Optimization of process conditions for enzymatic hydrolysis of lactose to produce D-galactose. Dalian: Dalian Polytechnic University, 2016.
[8] 刘鑫龙, 王立晖, 汤卫华 , 等. β-半乳糖苷酶催化合成低聚半乳糖的研究. 食品安全导刊, 2015(26):164-165.
Liu X L, Wang L H, Tang W H , et al. Studies on the synthesis of galactooligosaccharides catalyzed by β-galactosidase. China Food Safety Magazine, 2015(26):164-165.
[9] Smith G P . Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985,228(4705):1315-1317.
doi: 10.1126/science.4001944
[10] Charbit A, Boulain J C, Ryter A , et al. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope expression at the cell surface. EMBO Journal, 1986,5(11):3029-3037.
doi: 10.1002/embj.1986.5.issue-11
[11] Lattemann C T, Maurer J, Gerland E , et al. Autodisplay: functional display of active β-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. Journal of Bacteriology, 2000,182(13):3726-3733.
doi: 10.1128/JB.182.13.3726-3733.2000
[12] Ernst W J, Alexra S, Lars T , et al. Expanding baculovirus surface display. European Journal of Biochemistry, 2000,267(13):4033-4039.
doi: 10.1046/j.1432-1327.2000.01439.x
[13] Boder E T, Wittrup K D . Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997,15(6):553-557.
doi: 10.1038/nbt0697-553 pmid: 9181578
[14] Efimov V P, Nepluev I V, Mesyanzhinov V V . Bacteriophage T4 as a surface display vector. Virus Genes, 1995,10(2):173-177.
doi: 10.1007/BF01702598 pmid: 8560777
[15] Pepper L R, Yong K C, Boder E T , et al. A decade of yeast surface display technology: where are we now? Combinatorial Chemistry and High Throughput Screening, 2008,11(2):127-134.
doi: 10.2174/138620708783744516 pmid: 18336206
[16] Kondo A, Ueda M . Yeast cell-surface display applications of molecular display. Applied Microbiology and Biotechnology, 2004,64(1):28-40.
doi: 10.1007/s00253-003-1492-3 pmid: 14716465
[17] 张莉 . 毕赤酵母GPⅠ型细胞壁蛋白基因的挖掘及功能研究. 广州: 华南理工大学, 2014.
Zhang L . Study on the function of GPⅠ type cell wall protein gene in Pichia pastoris. Guangzhou: South China University of Technology, 2014.
[18] Groot P W, Ram A F, Klis F M . Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology, 2005,42(8):657-675.
doi: 10.1016/j.fgb.2005.04.002 pmid: 15896991
[19] Rymowicz W, Wojtatowicz M, Robak M . Use of immobilized Yarrowia lipolytica cells in Ca-alginate for citric acid production. Acta Microbiologica Polonica, 1995,42(2):163-170.
[20] Ucar F B, Celik G, Akpinar O , et al. Production of citric and isocitric acid by Yarrowia lipolytica strains grown on different carbon sources. Türk Biyokimya Dergisi, 2014,39(3):285-290.
[21] Sarris D, Galiotou-Panayotou M, Koutinas A A , et al. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. Journal of Chemical Technology and Biotechnology, 2011,86(11):1439-1448.
doi: 10.1002/jctb.v86.11
[22] Rymowicz W, Rywińska A, Marcinkiewicz M . High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters, 2009,31(3):377-380.
doi: 10.1007/s10529-008-9884-1
[23] Juszczyk P, Tomaszewska L, Rymowicz W . Production of mannitol by Yarrowia lipolytica in fed-batch fermentation. International Conference on Advances in Biotechnology, 2013.
[24] Nicaud J M, Madzak C, Peter V D B , et al. Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Research, 2002,2(3):371-379.
[25] Li L J, Wang H W, Cheng H R , et al. Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. Journal of Functional Foods, 2017,32:208-217.
doi: 10.1016/j.jff.2017.02.036
[26] Chen D C, Beckerich J M, Gaillardin C . One-step transformation of the dimorphic yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 1997,48(2):232-235.
doi: 10.1007/s002530051043 pmid: 9299782
[27] Cheng H R, Jiang N . Extremely rapid extraction of DNA from bacteria and yeasts. Biotechology Letters, 2006,28(1):55-59.
doi: 10.1007/s10529-005-4688-z
[28] Cheng H R, Lv J Y, Wang B , et al. Yarrowia lipolytica and its use in erythritol production: Chinese patent, 201310282059.X. 2013.
[29] Wang S Q, Wang H W, Lv J Y , et al. Highly efficient erythritol recovery from waste erythritol mother liquid by yeast-mediated biopurification. Journal of Agricultural and Food Chemistry, 2017,65(50):11020-11028.
doi: 10.1021/acs.jafc.7b04112
[30] Finogenova T, Morgunov I, Kamzolova S , et al. Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Applied Biochemistry and Microbiology, 2005,41(5):418-425.
doi: 10.1007/s10438-005-0076-7
[31] Gao S, Tong Y, Zhu L , et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017,41:192-201.
doi: 10.1016/j.ymben.2017.04.004
[32] Xue Z X, Pamela L S, Seung-Pyo H , et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 2013,31(8):734-740.
doi: 10.1038/nbt.2622 pmid: 2020
[33] Zhang L B, An J, Li L J , et al. Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. Journal of Agricultural and Food Chemistry, 2016,64(19):3828-3837.
doi: 10.1021/acs.jafc.6b00115
[34] An J, Zhang L B, Li L J , et al. An alternative approach to synthesizing galactooligosaccharides by cell-surface display of β-galactosidase on Yarrowia lipolytica. Journal of Agricultural and Food Chemistry, 2016,64(19):3819-3827.
doi: 10.1021/acs.jafc.5b06138
[35] Li N, Wang H W, Cheng H L , et al. An integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface. Journal of Agricultural and Food Chemistry, 2016,64(31):6179-6187.
doi: 10.1021/acs.jafc.6b02175
[36] Das S, Hollenberg C P . A high-frequency transformation system for the yeast Kluyveromyces lactis. Current Genetics, 1982,6(2):123-128.
doi: 10.1007/BF00435211 pmid: 24186478
[37] Bussey H, Meaden P . Selection and stability of yeast transformants expressing cDNA of an Ml killer toxin-immunity gene. Current Genetics, 1985,9(4):285-291.
doi: 10.1007/BF00419957
[38] Kikuchi Y . Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell, 1983,35(1):487-493.
doi: 10.1016/0092-8674(83)90182-4
[1] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 陈凯丽,张付涛,王东月,张倩,李运清. 解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *[J]. 中国生物工程杂志, 2019, 39(3): 29-36.
[6] 张凤玉, 胡丹, 龚秀芳, 郑峰, 潘秀珍, 王长军. 2型猪链球菌β-半乳糖苷酶基因的克隆表达及酶活性测定[J]. 中国生物工程杂志, 2014, 34(2): 39-44.
[7] 姚晶, 任婧, 吴正钧, 孙克杰, 郭本恒. 唾液酸化路易斯-X合成关键酶基因的克隆表达[J]. 中国生物工程杂志, 2011, 31(12): 51-56.
[8] 汪小锋, 申旭光, 赵鹤云, 孙永川, 纪昌涛, 闫云君. 带His-tag的解脂耶氏酵母脂肪酶Lip2在毕赤酵母中的表达及纯化[J]. 中国生物工程杂志, 2011, 31(04): 53-59.
[9] 汪晨, 李莎, 徐虹, 魏艳, 蔡恒. 响应面法优化重组大肠杆菌产蔗糖异构酶发酵培养基[J]. 中国生物工程杂志, 2011, 31(04): 92-97.
[10] 翟亚峰 束刚 王松波 江青艳. 乳糖操纵子介导的半乳糖苷酶在转基因动物中的应用前景[J]. 中国生物工程杂志, 2010, 30(09): 87-91.
[11] 李荷 游娟 顾取良 杨红. 热稳定α-半乳糖苷酶基因在毕赤酵母中的分泌表达及酶学性质研究[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[12] 邓永康1,吴民泸2,刘盛邦1,杜林方1,伍黎黎1,李曼1,孟延发1. 乳糖诱导重组尿酸酶基因在大肠杆菌中的表达[J]. 中国生物工程杂志, 2009, 29(07): 74-79.
[13] 刘莉,周政,采克俊,张易祥,何湃,曹访. EGFP-LacZ双报告基因真核表达载体的构建及体外表达[J]. 中国生物工程杂志, 2009, 29(01): 65-69.
[14] 陈晓月,金宁一,邹伟,海洋,马海利,李昌,屈勇刚. β-半乳糖苷酶在枯草芽孢杆菌中的分泌表达[J]. 中国生物工程杂志, 2008, 28(5): 111-115.
[15] 杨书慧,赵胜军,刘军,闫达中,易丹. 乳糖诱导甜蛋白Monellin在大肠杆菌中的表达[J]. 中国生物工程杂志, 2008, 28(3): 53-58.