Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 29-36    DOI: 10.13523/j.cb.20190305
研究报告     
解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *
陈凯丽1,张付涛1,王东月1,张倩1,李运清2,**()
1 济宁医学院临床医学院 济宁 272067
2 济宁医学院病原生物学教研室 济宁 272067
Identification and Characterization of the Vesicle Protein YlSec15 in Yarrowia lipolytica
Kai-li CHEN1,Fu-tao ZHANG1,Dong-yue WANG1,Qian ZHANG1,Yun-qing LI2,**()
1 School of Clinical Medicine, Jining Medical University, Jining 272067,China
2 Department of Pathogenic Biology, Jining Medical University, Jining 272067, China
 全文: PDF(877 KB)   HTML
摘要:

解脂耶氏酵母(Yarrowia lipolytica)进行出芽繁殖时,决定未来分裂平面的出芽位点不是随机选取的,而是选择在前一次细胞分裂位置的对侧出芽,即进行双极出芽。目前对解脂耶氏酵母双极出芽的分子调控机制并不清楚。通过观察蛋白定位及过量表达的方法研究了解脂耶氏酵母中囊泡蛋白YlSec15的功能。结果表明:YlSec15在细胞中有明显的极性定位,在细胞的小芽内以及大中芽的芽颈处富集,过量表达YlSec15抑制了菌丝的形成并使得部分细胞的出芽位点选择方式由双极出芽转变为随机出芽,而引起这一变化的原因可能是由于过量的YlSec15在细胞中不能进行正常的极性定位。此外,YlSec15可能是通过YlRas2介导的信号通路参与调控细胞的菌丝形成及双极出芽。这一发现丰富了解脂耶氏酵母中双极出芽的分子调控机制,也证明了极性生长与囊泡运输之间是相互影响的。

关键词: 解脂耶氏酵母双极出芽菌丝囊泡蛋白YlSec15    
Abstract:

Yarrowia lipolytica is a budding yeast and the budding position which determined the division plane is not selected randomly but determined by the distance of the last division site, that is, bud in the bipolar budding pattern. At present, the molecular regulation pathway of the bipolar budding is not well studied. In this report, the characterization of the vesicle protein YlSec15 was studied through the localization and overexpression. YlSec15 can locate inside the small buds and the neck of the middle or big buds, indicating the patterns of polar localization. Overexpression of YlSec15 in the yeast can inhibit the formation of hyphae and change budding pattern of cells, from bipolar to random. The causes of these changes may be due to the delocalization to the polar site of the excessive YlSec15. Besides, the normal localization of YlSec15 dependent on Ylras2. Based on this result, we speculate that YlSec15 may be involved in regulating the polar growth of cells through the signal pathway which is mediated by YlRas2. The discovery in this paper will enrich the molecular regulation mechanism of the bipolar budding and confirm the relationship between polar growth and vesicle transport in Yarrowia lipolytica.

Key words: Yarrowia    lipolytica    Bipolar    budding    Hyphae    Vesicle    protein    YlSec15
收稿日期: 2018-09-27 出版日期: 2019-04-12
ZTFLH:  Q71  
基金资助: * 国家自然科学基金青年基金资助项目(31500056)
通讯作者: 李运清     E-mail: liyunqing2013@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈凯丽
张付涛
王东月
张倩
李运清

引用本文:

陈凯丽,张付涛,王东月,张倩,李运清. 解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *[J]. 中国生物工程杂志, 2019, 39(3): 29-36.

Kai-li CHEN,Fu-tao ZHANG,Dong-yue WANG,Qian ZHANG,Yun-qing LI. Identification and Characterization of the Vesicle Protein YlSec15 in Yarrowia lipolytica. China Biotechnology, 2019, 39(3): 29-36.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190305        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/29

菌株 基因型 来源
PO1a MATA leu2-270 ura3-302 13
YLX260 MATA leu2-270 ura3-302 Ylrsr1loxR/P 8
YLX81 MATA leu2-270 ura3-302 Ylras2 9
YLJ4 MATA leu2-270 ura3-302 [Integrative URA3 YlSec15↑] This study
YLJ8 MATA leu2-270 ura3-302 [CEN LEU2 YlSEC15-EGFP] This study
YLJ9 MATA leu2-270 ura3-302 [CEN LEU2 EGFP-YlSec15↑] This study
DH5 F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15Δ (lacZYA-argF) U169, hsdR17 (rK?mK+), λ- Takara, Japan
表1  实验中所用的菌株
引物名称 序列(5'→3')
Y1SEC15-1F GGAAGATCTTGCACATCTGAAACTTCTCAAC
Y1SEC15-1R CGCGGATCCAGGCTCATGTGCACCAGACGC
Y1SEC15-3F CGCGGATCCATGAAGATCCCCAATGTCTCC
Y1SEC15-3R CCGGAATTCCCACGGATCTGATCACTGGAGT
Y1SEC15-TR ACCCATCGATATTGATCTTGAGCAGACCGTCAC
表2  实验中所用的主要引物
图1  YlSec15的分离及鉴定
图2  YlSec15-EGFP在细胞中的定位
图3  YlSec15参与调控细胞的形态
图4  过量表达YlSec15影响细胞的双极出芽
图5  过量的YlSec15在细胞中的分布
图6  YlSec15-EGFP在Ylrsr1Δ和Ylras2Δ中的定位
[1] Chiou J G, Balasubramanian M K, Lew D . Cell polarity in yeast. Annual Review of Cell and Developmental Biology, 2017,33:77-101.
doi: 10.1146/annurev-cellbio-100616-060856
[2] Howell A S, Lew D J . Morphogenesis and the cell cycle. Genetics, 2012,190(1):51-77.
doi: 10.1534/genetics.111.128314 pmid: 22219508
[3] Park H O, Bi E . Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiology and Molecular Biology Review, 2007,71(1):48-96.
doi: 10.1128/MMBR.00028-06 pmid: 1847380
[4] Nicaud J M . Yarrowia lipolytica. Yeast, 2012,29(10):409-418.
doi: 10.1002/yea.2921 pmid: 23038056
[5] Herrero A B, López M C, Fernández L L , et al. Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology, 1999,145(10):2727-2737.
doi: 10.1099/00221287-145-10-2727 pmid: 10537194
[6] Veses V N, Gow N A . Pseudohypha budding patterns of Candida albicans. Medical Mycology. 2008,47(3):268-275.
[7] Cullen P J, Sprague G F . The roles of bud-site-selection proteins during haploid invasive growth in yeast. Molecular Biology of the Cell. 2002,13(9):2990-3004.
[8] Li Y Q, Li M, Zhao X F , et al. A role for the Rap GTPase YlRsr1 in cellular morphogenesis and the involvement of YlRsr1 and the Ras GTPase YlRas2 in bud site selection in the dimorphic yeast Yarrowia lipolytica. Eukaryotic Cell, 2014,13(5):580-590.
doi: 10.1128/EC.00342-13 pmid: 4060475
[9] Li M, Li Y Q, Zhao X F , et al. Roles of the three Ras proteins in the regulation of dimorphic transition in the yeast Yarrowia lipolytica. FEMS Yeast Research, 2014,14(3):451-463.
doi: 10.1111/1567-1364.12129 pmid: 24382266
[10] TerBush D R, Maurice T, Roth D , et al. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 1996,15(23):6483-6494.
doi: 10.1002/j.1460-2075.1996.tb01039.x pmid: 8978675
[11] Guo P P, Yong J Y, Wang Y M , et al. Sec15 links bud site selection to polarised cell growth and exocytosis in Candida albicans. Scientific Report, 2016,6:26464.
doi: 10.1038/srep26464 pmid: 27225289
[12] Hurtado C A, Rachubinski R A . Isolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica. Eukaryotic Cell, 2002,1(4):526-537.
doi: 10.1128/EC.1.4.526-537.2002 pmid: 257674
[13] Richard M, Quijano R R, Bezzate S , et al. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. Journal of Bacteriology, 2001,183(10):3098-3107.
doi: 10.1128/JB.183.10.3098-3107.2001
[14] Zhao X F, Li M, Li Y Q , et al. The TEA/ATTS transcription factor YlTec1p represses yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Research. 2013,13(1):50-61.
doi: 10.1111/j.1567-1364.2012.12008.x
[15] TerBush D R, Novick P . Sec6, Sec8, and Secl5 are components of a multi-subunit complex which localizes to small bud tips in Saccharomyces cerevisiae. The Journal of Cell Biology, 1995,130(2):299-312.
doi: 10.1083/jcb.130.2.299 pmid: 2199927
[16] France Y E, Boyd C, Coleman J , et al. 2005, The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit. Journal of Cell Science, 119(5):876-888.
doi: 10.1242/jcs.02849 pmid: 16478783
[1] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[4] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[5] 汪小锋, 申旭光, 赵鹤云, 孙永川, 纪昌涛, 闫云君. 带His-tag的解脂耶氏酵母脂肪酶Lip2在毕赤酵母中的表达及纯化[J]. 中国生物工程杂志, 2011, 31(04): 53-59.
[6] 冷远服, 罗明典. 赤霉素的工业生产及其发展前景[J]. 中国生物工程杂志, 1989, 9(4): 43-46.
[7] 柯为. 胆固醇氧化酶研究的新进展[J]. 中国生物工程杂志, 1987, 7(5): 73-73.
[8] T.E.Tautorus, P.M.Townsley, 叶正祥, 潘奠武, 赵玖. 商品蘑菇发酵的生物工程[J]. 中国生物工程杂志, 1985, 5(2): 43-48.