Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 44-57    DOI: 10.13523/j.cb.20191006
技术与方法     
酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *
张正坦,朱婧,谢志平()
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
A Subcellular Localization Survey for All SNARE Proteins in Saccharomyces cerevisiae
ZHANG Zheng-tan,ZHU Jing,XIE Zhi-ping()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology,Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(4543 KB)   HTML
摘要:

在真核细胞中,内质网、高尔基体、质膜等膜结构间的蛋白质运输主要通过囊泡出芽和融合实现。SNARE蛋白家族在介导囊泡与目的膜结构融合过程中发挥关键作用。在模式生物酿酒酵母中,对全基因组SNARE蛋白的系统研究仍有不足。此研究构建了一套用于标记酿酒酵母基因组全部24种SNARE的工具质粒。该系列质粒既能呈现出良好的定位特征,又避免了过度表达造成的定位异常。通过与细胞器标记共定位验证了SNARE蛋白的亚细胞定位。结果发现3种SNARE的定位与之前报道不符:Bos1定位于早高尔基体,Snc1和Bet1定位于晚高尔基体/早内体。另外,Sec9定位于芽尖和芽颈,这是首次观察到Sec9在活酵母细胞中的定位。这项工作首次全面的检验了酵母SNARE家族蛋白的亚细胞定位,为后续SNARE蛋白功能研究提供了新线索,并为相关研究提供了一套工具质粒。

关键词: SNARE亚细胞定位酿酒酵母共定位    
Abstract:

In eukaryotic cells, protein transport between membrane structures such as endoplasmic reticulum, Golgi, and plasma membrane is mainly achieved via vesicle budding and fusion. The SNARE protein family plays a key role in mediating the fusion of vesicles with the target membrane structure. In the model organism Saccharomyces cerevisiae, systematic studies of SNARE proteins in the whole genome are still lacking. A set of plasmids for the labeling of all 24 SNAREs in S. cerevisiae with GFP are constructed. Most of the plasmids employ endogenous promoters for expression, with only a few mildly overexpressed, thus avoiding potential mislocalization caused by high overexpression. The subcellular localization of each SNARE is verified by co-localization with organelle markers. Results indicate that the localization of three SNAREs differs from those in existing literature: Bos1 localizes to early Golgi; and Snc1 and Bet1 localize to the late Golgi/early endosomes. In addition, Sec9 is detected at the bud tip and septum. This is the first time that the localization of Sec9 in vegetative cells has been observed. It is also the first comprehensive experimental evaluation of yeast SNARE subcellular localization. Furthermore, the constructed plasmids constitute a convenient tool set for future yeast cell biology studies.

Key words: SNARE    Subcellular localization    Saccharomyces cerevisiae    Colocalization
收稿日期: 2019-03-28 出版日期: 2019-11-12
ZTFLH:  Q816  
基金资助: *上海市自然科学基金探索类项目(18ZR1420400);上海市教育委员会科研创新计划(2017-01-07-00-02-E00035)
通讯作者: 谢志平     E-mail: zxie@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张正坦
朱婧
谢志平

引用本文:

张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.

ZHANG Zheng-tan,ZHU Jing,XIE Zhi-ping. A Subcellular Localization Survey for All SNARE Proteins in Saccharomyces cerevisiae. China Biotechnology, 2019, 39(10): 44-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191006        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/44

Primer name Primer sequence
Sec20 pro-F TCCTGCAGCCCGGGGGATCCATTGTTTAATGTGGTCGTTGTAAC
Sec20 pro-R AATTCTTCACCTTTAGACATAATCTTTAATGGCTTTATAGTTTGTT
Sec20-F GGATCCCCGGGTTAATTAACATGGTCGTGACATTTTTGCAGGA
Sec20-R ATACAGTTTTTTGCGGCCGCTCATAGCTCATCATGTGAGACG
Sec22 pro-F TCCTGCAGCCCGGGGGATCCTCATAGATTTATCTTCATATGTTCT
Sec22 pro-R AATTCTTCACCTTTAGACATCCCTACTTAATTGTGAGTGTG
Sec22-F GGATCCCCGGGTTAATTAACATGATAAAGTCAACACTAATCTACA
Sec22-R ATACAGTTTTTTGCGGCCGCCTATTTGAGGAAGATCCACCAG
Use1 pro-F TCCTGCAGCCCGGGGGATCCAAGCCAAATCTGTTACGCACGG
Use1 pro-R AATTCTTCACCTTTAGACATCTTGCCTTGCTATTATGTGTCC
Use1-F GGATCCCCGGGTTAATTAACATGGCTGAAACTTCCAACGAC
Use1-R ATACAGTTTTTTGCGGCCGCTTATAGGGCCGGGAATAATTGAA
Ufe1 pro-F TCCTGCAGCCCGGGGGATCCAGCACCAAAATGCCTCCATTGA
Ufe1 pro-R AATTCTTCACCTTTAGACATGAGTTAATAAGCTCTTCACTGC
Ufe1-F GGATCCCCGGGTTAATTAACATGATGTCTGATTTAACACCAATAT
Ufe1-R ATACAGTTTTTTGCGGCCGCTTAACCTACATAATCTAGGAACAAT
Sed5 pro-F TCCTGCAGCCCGGGGGATCCCTATCGCCTCAAAGAACCACAT
Sed5 pro-R AATTCTTCACCTTTAGACATGGGAGTTGTGTGGTATGGTGA
Sed5-F GGATCCCCGGGTTAATTAACATGAACATAAAGGATAGAACTTCA
Sed5-R ATACAGTTTTTTGCGGCCGCTTAATTGACTAAAACCCAAATAACG
Gos1 pro-F TCCTGCAGCCCGGGGGATCCTGCCTGTTAGACACGAGATGTT
Gos1 pro-R AATTCTTCACCTTTAGACATGTGGTGTGGTTGCTTGTCTGG
Gos1-F GGATCCCCGGGTTAATTAACATGAGCTCACAACCGTCTTTCG
Primer name Primer sequence
Gos1-R ATACAGTTTTTTGCGGCCGCTTACCATGTGAAAAACAAAAACAGT
Bos1 pro-F TCCTGCAGCCCGGGGGATCCACGTCTTCTATATCTGGGTTTTC
Bos1 pro-R AATTCTTCACCTTTAGACATTCCCCCCTCAAATCAATATGATT
Bos1-F GGATCCCCGGGTTAATTAACATGGTATGTTTGATCGCCGGA
Bos1-R ATACAGTTTTTTGCGGCCGCCTATCTTAACCATTTCAACACATAA
Sft1 pro-F TCCTGCAGCCCGGGGGATCCGGCGGAAAGTTAGGCCGACA
Sft1 pro-R AATTCTTCACCTTTAGACATCGCTATGATGATTATATATTACCTT
Sft1-F GGATCCCCGGGTTAATTAACATGTCAAATTCTAGGTATTCTCAG
Sft1-R ATACAGTTTTTTGCGGCCGCCTAAAATAACTTAAACAGGGTATATA
Tlg1 pro-F TCCTGCAGCCCGGGGGATCCGATAGTCCCCCATTTTTTTTTATGT
Tlg1 pro-R AATTCTTCACCTTTAGACATTTGTTAAAGAAAGGATCTTAGCAAT
Tlg1-F GGATCCCCGGGTTAATTAACATGAACAACAGTGAAGATCCGTT
Tlg1-R ATACAGTTTTTTGCGGCCGCTCAAGCAATGAATGCCAAAACTAA
Tlg2 pro-F TCCTGCAGCCCGGGGGATCCCACCCATTTAAATTTGACGATAAA
Tlg2 pro-R AATTCTTCACCTTTAGACATGTTTGTAACGACTGCCTAGATC
Tlg2-F GGATCCCCGGGTTAATTAACATGTTTAGAGATAGAACTAATTTATTT
Tlg2-R ATACAGTTTTTTGCGGCCGCTCAAAGTAGGTCATCCAAAGCAT
Snc1 pro-F TCCTGCAGCCCGGGGGATCCTAATATGTCCTTAGAATGGGGAA
Snc1 pro-R AATTCTTCACCTTTAGACATGGACAATGAATACGTTGCGCTT
Snc1-F GGATCCCCGGGTTAATTAACATGTCGTCATCTACTCCCTTTGA
Snc1-R ATACAGTTTTTTGCGGCCGCCTATCGACTAAAGTGAACAGCAA
Snc2 pro-F TCCTGCAGCCCGGGGGATCCGTGTTTCGTTAGGTGGGCCG
Snc2 pro-R AATTCTTCACCTTTAGACATCGTTGCGCGTTCTTATTTTGTA
Snc2-F GGATCCCCGGGTTAATTAACATGTCGTCATCAGTGCCATACG
Snc2-R ATACAGTTTTTTGCGGCCGCTTAGCTGAAATGGACGACGATAG
Bet1 pro-F TCCTGCAGCCCGGGGGATCCCCAGGCGACGTCAGAGATGA
Bet1 pro-R AATTCTTCACCTTTAGACATCTGTGTAGCCTAGTGTTGTGA
Bet1-F GGATCCCCGGGTTAATTAACATGAGTTCAAGGTATGAGAAATTAT
Bet1-R ATACAGTTTTTTGCGGCCGCTTATGTAATCCATACCCAAAAAAATA
Vam3 pro-F TCCTGCAGCCCGGGGGATCCGAAAACAAGGAAAAAACAACAGAA
Vam3 pro-R AATTCTTCACCTTTAGACATAATCTCAACTTTCTGCAGTGGAT
Vam3-F GGATCCCCGGGTTAATTAACATGTCCTTTTTCGACATCGAAG
Vam3-R ATACAGTTTTTTGCGGCCGCCTAACTTAATACAGCAAGCAATAC
Vam7 pro-F TCCTGCAGCCCGGGGGATCCGCCTATTCTTTCACCAAATTCAG
Vam7 pro-R AATTCTTCACCTTTAGACATCAATATCAATTATCAACCCTTATATG
Vam7-F GGATCCCCGGGTTAATTAACATGGCAGCTAATTCTGTAGGGA
Vam7-R ATACAGTTTTTTGCGGCCGCTCAAGCACTGTTGTTAAAATGTCT
Nyv1 pro-F TCCTGCAGCCCGGGGGATCCAAGGCGGCAAGACTTCAAGAAG
Nyv1 pro-R AATTCTTCACCTTTAGACATTTGGTAAAAATATAAAAGTCCAAT
Nyv1-F GGATCCCCGGGTTAATTAACATGAAACGCTTTAATGGTATGTATA
Nyv1-R ATACAGTTTTTTGCGGCCGCTTACCACAGATAGAAAAACATGAAA
Primer name Primer sequence
Vti1 pro-F TCCTGCAGCCCGGGGGATCCATTGATTATCCTTCAAGTCCATC
Vti1 pro-R AATTCTTCACCTTTAGACATAGTAAGCCATGCAGCAATGTAAA
Vti1-F GGATCCCCGGGTTAATTAACATGAGTTCCCTATTAATATCATACG
Vti1-R ATACAGTTTTTTGCGGCCGCTTATTTAAACTTTGAGAACAAAACTA
Pep12 pro-F TCCTGCAGCCCGGGGGATCCTACTTAGTCCTTTGGTCAAAAATAT
Pep12 pro-R AATTCTTCACCTTTAGACATCTCAACACAATTATTGTAGTAATTTA
Pep12-F GGATCCCCGGGTTAATTAACATGTCGGAAGACGAATTTTTTGG
Pep12-R ATACAGTTTTTTGCGGCCGCTTACAATTTCATAATGAGAAAAATAAAA
Syn8 pro-F TCCTGCAGCCCGGGGGATCCTGAAAGCTCGTACTTCTGTCGC
Syn8 pro-R AATTCTTCACCTTTAGACATACCGTGTGTGCTTACGCATCTA
Syn8-F GGATCCCCGGGTTAATTAACATGGATGTGTTGAAGCTGGGTT
Syn8-R ATACAGTTTTTTGCGGCCGCTTATAATACTAATAGAAGCAACAGG
Ykt6 pro-F TCCTGCAGCCCGGGGGATCCTTCTTCTTCTCCATTATTATCTTCA
Ykt6 pro-R AATTCTTCACCTTTAGACATTGCCAAAATAACTTCTCTAGTGAT
Ykt6-F GGATCCCCGGGTTAATTAACATGAGAATCTACTACATCGGTG
Ykt6-R ATACAGTTTTTTGCGGCCGCCTACATGATGATGCAACACGAAT
Sso1 pro-F TCCTGCAGCCCGGGGGATCCTACCGAAGAAAGAATACGACGAT
Sso1 pro-R AATTCTTCACCTTTAGACATTTGATTTGTTTCTATTTTTAATTGCC
Sso1-F GGATCCCCGGGTTAATTAACATGAGTTATAATAATCCGTACCAG
Sso1-R ATACAGTTTTTTGCGGCCGCTTAACGCGTTTTGACAACGGCT
Sso2 pro-F TCCTGCAGCCCGGGGGATCCTATAAATATAATAATATTATTGATTAATTA
Sso2 pro-R AATTCTTCACCTTTAGACATTGCTGCAATATTTGTGCGTGTAT
Sso2-F GGATCCCCGGGTTAATTAACATGAGCAACGCTAATCCTTATGA
Sso2-R ATACAGTTTTTTGCGGCCGCTTACTTTCTTGTTTCCACAACGG
Sec9 pro-F TCCTGCAGCCCGGGGGATCCTCTCTCTCTCTCTCTACTTAACA
Sec9 pro-R AATTCTTCACCTTTAGACATTCTTTTGGTGTCAATGGTGTATTA
Sec9-F GGATCCCCGGGTTAATTAACATGGGATTAAAGAAATTTTTTAAGAT
Sec9-R ATACAGTTTTTTGCGGCCGCCTATCTGATACCTGCCAACCTG
Spo20 pro-F TCCTGCAGCCCGGGGGATCCAAAAAGCCGTTTGCGGAAAGCA
Spo20 pro-R AATTCTTCACCTTTAGACATTATATATCTAAAAATGGCTATTCACA
Spo20-F GGATCCCCGGGTTAATTAACATGGGGTTCAGAAAAATACTTGCTA
Spo20-R ATACAGTTTTTTGCGGCCGCTCACCATCTTTTCCCGATCACT
BS-Ura-F CCTTTTTTGCGAGGCATATTTATG
BS-Ura-R GTAACTATTGAATTTTGTTTGGATTT
GFP-F ATGTCTAAAGGTGAAGAATTATTCA
GFP-Fa6a-R GTTAATTAACCCGGGGATCCGTCGACCTGCAGCGTACGAAGCTTTGTACAATTCATCCATACCATG
Stu1-F CCAATTGAGGCCTTTTTTGCGAGGCATATTTAT
Stu1-R AAAAAGGCCTCAATTGGCGCAGTAGCCTCA
Snab1-F TAGTTACGTAGACGTCCTACGATTCCGCGG
Snab1-R GGACGTCTACGTAACTATTGAATTTTGTTTGGATT
表1  引物及DNA序列
Plasmid Restriction sites or PCR primers
BS-Ura3-SEC20pro-GFP-Sec20 BS-Ura-F/BS-Ura-R
BS-Ura3-SEC22pro-GFP-Sec22 Stu I & PflF I
BS-Ura3-USE1pro-GFP-Use1 Stu I & PflF I
BS-Ura3-UFE1pro-GFP-Ufe1 BS-Ura-F/BS-Ura-R
BS-Ura3-SSO2pro-GFP-Ufe1 BS-Ura-F/BS-Ura-R
BS-Ura3-SED5pro-GFP-Sed5 Stu I & SnaB I
BS-Ura3-GOS1pro-GFP-Gos1 Stu I & SnaB I
BS-Ura3-BOS1pro-GFP-Bos1 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Bos1 Stu I & SnaB I
BS-Ura3-SFT1pro-GFP-Sft1 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Sft1 Stu I & SnaB I
BS-Ura3-TLG1pro-GFP-Tlg1 Stu I & SnaB I
BS-Ura3-TLG2pro-GFP-Tlg2 Stu I & SnaB I
BS-Ura3-SNC1pro-GFP-Snc1 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Snc1 Stu I & SnaB I
BS-Ura3-SNC2pro-GFP-Snc2 Stu I & SnaB I
BS-Ura3-BET1pro-GFP-Bet1 Stu I & PflF I
BS-Ura3-BET1pro-2GFP-Bet1 Stu I & PflF I
BS-Ura3-VAM3pro-GFP-Vam3 Stu I & SnaB I
BS-Ura3-VAM7pro-GFP-Vam7 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Vam7 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Nyv1 Stu I & SnaB I
BS-Ura3-VTI1pro-GFP-Vti1 Stu I & PflF I
BS-Ura3-PEP12pro-GFP-Pep12 BS-Ura-F/BS-Ura-R
BS-Ura3-SYN8pro-GFP-Syn8 Stu I & SnaB I
BS-Ura3-YKT6pro-GFP-Ykt6 Stu I & PflF I
BS-Ura3-SSO1pro-GFP-Sso1 Stu I & SnaB I
BS-Ura3-SSO2pro-GFP-Sso2 Stu I & PflF I
BS-Ura3-SEC9pro-GFP-Sec9 Stu I & SnaB I
BS-Ura3-SPO20pro-GFP-Spo20 Stu I & SnaB I
BS-Ura3-NYV1pro-GFP-Spo20 Stu I & SnaB I
表2  质粒及线性化所用的酶切位点
图1  GFP-SNARE系列质粒结构示意图
图2  呈现胞内点状分布的SNARE
图3  定位于较大细胞器的SNARE
图4  位于质膜SNARE
图5  定位在内质网或细胞核的SNARE
图6  定位在早高尔基体的SNARE
图7  定位在晚高尔基体/早内体的SNARE
图8  定位在液泡或晚内体的SNARE
SNARE Subcellular localization
Spo20 Nucleus
Sec20 ER
Sec22 ER
Use1 ER
Ufe1 ER
Sed5 Early Golgi
Gos1 Early Golgi
Bos11) Early Golgi
Sft1 Early Golgi、late Golgi/early endosome
Snc12) Late Golgi/early endosome
Snc2 Late Golgi/early endosome
Tlg1 Late Golgi/early endosome
Tlg2 Late Golgi/early endosome
Bet13) Late Golgi/early endosome
Syn8 Late endosome
Pep12 Late endosome
Vam3 Vacuole、late endosome
Vam7 Vacuole、late endosome
Vti1 Vacuole、late endosome
Nyv1 Vacuole
Sso1 Plasma membrane
Sso2 Plasma membrane
Sec94) Bud tip、septum
Ykt6 Cytoplasm
表3  酿酒酵母全基因组SNARE蛋白的亚细胞定位
[1] Bonifacino J S, Glick B S . The mechanisms of vesicle budding and fusion. Cell, 2004,116(2):153-166.
[2] S?llner T, Whiteheart S W, Brunner M , et al. SNAP receptors implicated in vesicle targeting and fusion. Nature, 1993,362(6418):318-324.
[3] Weber T, Zemelman B V, Mcnew J A , et al. SNAREpins: minimal machinery for membrane fusion. Cell, 1998,92(6):759-772.
[4] Fasshauer D, Sutton R B, Jahn B R . Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(26):15781-15786.
[5] Burri L, Lithgow T . A complete set of SNAREs in yeast. Traffic, 2004,5(1):45-52.
[6] Hardwick K G ,Pelham H R B. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. The Journal of Cell Biology, 1992,119(3):513-521.
[7] Tsui M M K, Tai W C S, Banfield D K . Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Molecular Biology of the Cell, 2001,12(3):521-538.
[8] Mcnew J A ,Coe J G S,S?gaard M, et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Letters, 1998,435(1):89-95.
[9] Shim J, Newman A P, Ferronovick S . The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. Journal of Cell Biology, 1991,113(1):55-64.
[10] Banfield D K, Lewis M J ,Pelham H R B. A SNARE-like protein required for traffic through the Golgi complex. Nature, 1995,375(6534):806-809.
[11] Newman A P, Groesch M E, Ferronovick S . Bos1p, a membrane protein required for ER to Golgi transport in yeast, co-purifies with the carrier vesicles and with Bet1p and the ER membrane. EMBO Journal, 1992,11(10):3609-3617.
[12] Protopopov V, Govindan B, Novick P , et al. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell, 1993,74(5):855-861.
[13] Lewis M J, Nichols B J, Prescianotto-Baschong C , et al. Specific retrieval of the exocytic SNARE snc1p from early yeast endosomes. Molecular Biology of the Cell, 2000,11(1):23-38.
[14] Tani M, Kuge O . Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae. Molecular Microbiology, 2012,86(5):1262-1280.
doi: 10.1111/mmi.12057
[15] Robinson M, Poon P P, Schindler C , et al. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Molecular Biology of the Cell, 2006,17(4):1845-1858.
[16] Holthuis J C M . Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO Journal, 1998,17(1):113-126.
[17] Abeliovich H . Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structures. Journal of Biological Chemistry, 1998,273(19):11719-11727.
[18] Lewis M J , Pelham H R B.A new yeast endosomal SNARE related to mammalian syntaxin 8. Traffic, 2003,3(12):922-929.
[19] Gerrard S R . Pep12p is a multifunctional yeast syntaxin that controls entry of biosynthetic, endocytic and retrograde traffic into the prevacuolar compartment. Traffic, 2000,1(3):259-269.
[20] Anwar K, Klemm R W, Condon A , et al. The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae. The Journal of Cell Biology, 2012,197(2):209-217.
[21] Dilcher M . Use1p is a yeast SNARE protein required for retrograde traffic to the ER. EMBO Journal, 2003,22(14):3664-3674.
[22] Lewis M J, Rayner J C, Pelham H R . A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum. EMBO Journal, 2014,16(11):3017-3024.
[23] Patel S K, Indig F E, Olivieri N , et al. Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Cell, 1998,92(5):611-620.
[24] Newman A P, Shim J, Ferronovick S . BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Molecular & Cellular Biology, 1990,10(7):3405.
[25] Ungermann C . Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. The Journal of Cell Biology, 1999,145(7):1435-1442.
[26] Cheever M L, Sato T K, Beer T D , et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology, 2001,3(7):613.
[27] Sato T K, Darsow T, Emr S D . Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Molecular and Cellular Biology, 1998,18(9):5308-5319.
[28] Kweon Y, Rothe A, Conibear E , et al. Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Molecular Biology of the Cell, 2003,14(5):1868-1881.
[29] Neiman A M . Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. The Journal of Cell Biology, 1998,140(1):29-37.
[30] Aalto M K, Ronne H, Ker?nen S . Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO Journal, 1993,12(11):4095-4104.
[31] Brennwald P, Kearns B, Champion K , et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell, 1994,79(2):245-258.
[32] Couve A, Gerst J E . Yeast Snc proteins complex with Sec9. Functional interactions between putative SNARE proteins. Journal of Biological Chemistry, 1994,269(38):23391-23394.
[33] Day K J, Casler J C, Glick B S . Budding yeast has a minimal endomembrane system. Developmental Cell, 2018,44(1):56-72.
[34] Ossipov D, Schroderkohne S , Schmitt H D. Yeast ER-Golgi v-SNAREs Bos1p and Bet1p differ in steady-state localization and targeting. Journal of Cell Science, 1999,112 (Pt 22)(22):4135-4142.
[35] Beilharz T . Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003,278(10):8219-8223.
[36] Meiringer C T A, Auffarth K, Hou H , et al. Depalmitoylation of Ykt6 prevents its entry into the multivesicular body pathway. Traffic, 2008,9(9):1510-1521.
[37] Weber-Boyvat M, Chernov K G, Aro N , et al. The Sec1/Munc18 protein groove plays a conserved role in interaction with Sec9p/SNAP-25. Traffic, 2016,17(2):131-153.
[1] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[2] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[3] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[6] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[7] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[8] 金雪,宋敬臻,谢志平. 酿酒酵母GPCR蛋白Ste2亚细胞定位信号探索 *[J]. 中国生物工程杂志, 2019, 39(11): 39-53.
[9] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[10] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[11] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[12] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[13] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.
[14] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[15] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.