Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (4): 37-46    DOI: 10.13523/j.cb.2012054
技术与方法     
引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*
朱航志1,蒋珊1,陈丹2,刘鹏阳1,万霞1,3,4,**()
1 中国农业科学院油料作物研究所 武汉 430062
2 武汉工程大学化工与制药学院 武汉 430205
3 农业农村部油料作物生物学与遗传育种重点实验室 武汉 430062
4 农业农村部油料加工重点实验室 武汉 430062
Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway
ZHU Hang-zhi1,JIANG Shan1,CHEN Dan2,LIU Peng-yang1,WAN Xia1,3,4,**()
1 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
2 School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
3 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
4 National and Local Joint Engineering Laboratory of Oil Lipid Processing Technology, Wuhan 430062, China
 全文: PDF(19886 KB)   HTML
摘要:

目的:微生物体内异戊二烯类化合物的前体物异戊烯焦磷酸酯的天然合成路径受到严格的代谢调控,因此限制了异戊二烯类化合物的高效生物合成,而新型异戊二烯醇利用途径独立于生物体内源性代谢路径,通过在微生物中引入IUP能够进行异戊烯焦磷酸酯的大量合成,从而促进异戊二烯类化合物的大量合成。方法:在油脂酵母解脂耶氏酵母中引入IUP,强化异戊烯焦磷酸酯生物合成,促进β-胡萝卜素的高效积累。结果:通过生物信息学的方法预测IUP中两个关键蛋白酿酒酵母来源的胆碱激酶ScCK和拟南芥来源的异戊烯磷酸激酶AtIPK,均为酸性亲水性蛋白,无跨膜区和信号肽,二者都具有疏松不稳定的结构特征,显著富集于磷酸类物质的合成通路中。在解脂耶氏酵母中利用同源重组技术引入外源β-胡萝卜素合成关键基因carRPcarB,强化甲羟戊酸途径的关键基因thmgRggs1,使工程菌株中积累2.68 mg/L β-胡萝卜素。通过Cre-loxP系统回收基因组上的ura标签,再将IUP进一步整合到工程菌株染色体上。当培养基中含有20 mM异戊二烯醇作为底物、碳氮比为4/3且发酵96 h后,重组解脂耶氏酵母中β-胡萝卜素的产量提高到410.2 mg/L,较原始工程菌的产量提高了近200倍。结论:IUP能够促进解脂耶氏酵母中β-胡萝卜素的高效积累,为利用IUP开展β-胡萝卜素和其他异戊二烯类化合物的高效生物合成提供新思路。

关键词: 异戊二烯醇利用途径(IUP)异戊烯焦磷酸酯β-胡萝卜素解脂耶氏酵母    
Abstract:

Objective: The natural synthesis pathway of isopentenyl pyrophosphate, the precursor of isoprene compounds in microorganisms, is subject to strict metabolic regulation, which limits the efficient biosynthesis of isoprene compounds, and the use of the artificial isopentenol utilization pathway (IUP) is independent of the biological endogenous metabolic pathways. By introducing IUP into microorganisms, a large amount of isopentenol pyrophosphate can be synthesized, thereby promoting the large amount of synthesis of isoprene compounds. Methods: Introducing the artificial IUP into the oleaginous yeast Yarrowia lipolytica to strengthen the isopentenyl pyrophosphate biosynthesis and promote the efficient accumulation of β-carotene. Results: The tertiary structures of two key proteins involved in IUP, ScCK (Choline kinase from Saccharomyces cerevisiae) and AtIPK (isopentenyl phosphate kinase from Arabidopsis thaliana), are predicted to be acidic hydrophilic proteins without transmembrane domain and signal peptide. Both proteins have loose and unstable structural features and contain a variety of post-translational features. Modification sites and multiple interacting proteins are involved in phosphorylation. The β-carotene synthesis pathway was constructed by introducing carRP and carB, and strengthening the expression of thmgR and ggs1 in Yarrowia lipolytica by using homologous recombination technique, and 2.68 mg/L β-carotene was accumulated in the engineered strain. The ura on the genome were removed by the Cre-loxP system, and then IUP was integrated into the genome of this engineered strain. The yield of β-carotene was achieved at the levels of 410.2 mg/L in the engineered strain, which was nearly 200 folds greater than that from the original engineered strain. The fermentation conditions were as follows: cells were incubated for 96 h in the medium containing 20 mmol/L isoprenol and the ratio of carbon to nitrogen was set as 4/3 in the medium. Conclusion: IUP can promote the efficient accumulation of β-carotene in Y. lipolytica. This study provides a new strategy for the efficient biosynthesis of β-carotene and other isoprene compounds by using IUP.

Key words: Isopentenol utilization pathway    Isopentenyl pyrophosphate    β-Carotene    Yarrowia lipolytica
收稿日期: 2020-12-25 出版日期: 2021-04-30
ZTFLH:  Q939  
基金资助: *中国农业科学院基础前沿培育项目(Y2020XK25);国家重点研发计划(2016YFD0501209);中国农业科学院科技创新工程资助项目(CAAS-ASTIP-2016-OCRI)
通讯作者: 万霞     E-mail: wanxia@oilcrops.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱航志
蒋珊
陈丹
刘鹏阳
万霞

引用本文:

朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.

ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway. China Biotechnology, 2021, 41(4): 37-46.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2012054        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I4/37

Strains or plasmids Characteristics or genotype Sources
pYLXP' Amp, Leu2 marker, TEF promoter and XPR2 terminator Our lab
pYLXP'2 Amp, Ura3 marker, TEF promoter and XPR2 terminator Our lab
prDNALoxp Amp, Leu2 and Ura3 marker, 26S rDNA, loxp, TEF promoter and XPR2 terminator Our lab
pYLXP'2∷idi pYLXP'2 derivative expressing idi from Y. lipolytica This study
pYLXP'2∷ ScCK pYLXP'2 derivative expressing ScCK from S. cerevisiae This study
pYLXP'2∷AtIPK pYLXP'2 derivative expressing IPK from A. thaliana This study
pYLXP'2∷ScCKAtIPK pYLXP'2 derivative expressing ScCK and AtIPK This study
pYLXP'2∷ScCKAtIPKidi pYLXP'2 derivative expressing ScCK, AtIPK and idi This study
prDNALoxp∷ScCKAtIPKidi prDNALoxp derivative expressing ScCK, AtIPK and idi This study
pYLXP'∷carRPthmgRGGS1∷carB pYLXP' derivative expressing thmgR, GGS1 from Y. lipolytica and carRP, carB from Mucor circinelloides This study
prDNALoxp∷carRPthmgRGGS1∷carB prDNALoxp derivative expressing carRP, thmgR, ggs1 and carB This study
E.coli DH5α F-φ80 (lacZ) ΔM15 Δ(lacZYA -argF) U169 endA1 recA1 hsdR17 (rk-,mk+) supE44 λ-thi-1 gyrA96 relA1 phoA TsingKe
Po1f Y. lipolytica, MATa, leu2-270, ura3-302, xpr2-322, axp-2, (Leu2-, Ura3-) Our lab
YLBC po1f-carRP-thmgR-GGS1-carB This study
YLBCp po1f∷pYLXP'∷carRPthmgRGGS1carB This study
YLBC-IUP po1f-carRP-thmgR-GGS1-carB-ScCK- AtIPK -idi This study
表1  实验所用质粒和菌株
图1  ScCK(a) 和 AtIPK(b) 同源建模三级结构及蛋白互作网络
图2  IUP促进解脂耶氏酵母中BC的合成
图3  培养条件对菌株YlBC-IUP BC产量的影响
[1] Chang W C, Song H, Liu H W, et al. Current development in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology, 2013,17(4):571-579.
doi: 10.1016/j.cbpa.2013.06.020 pmid: 23891475
[2] Ajikumar P K, Tyo K, Carlsen S, et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Molecular Pharmaceutics, 2008,5(2):167-190.
doi: 10.1021/mp700151b pmid: 18355030
[3] Wei L J, Kwak S, Liu J J, et al. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2018,115(7):1793-1800.
pmid: 29573412
[4] 左珊珊, 李阳, 马露, 等. β-胡萝卜素的生物活性研究进展. 食品安全质量检测学报, 2020,11(21):7694-7699.
Zuo S S, Li Y, Ma L, et al. Research progress on bioactivity of β-carotene. Journal of Food Safety & Quality, 2020,11(21):7694-7699.
[5] Chubukov V, Mukhopadhyay A, Petzold C J, et al. Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2016,2:16009.
pmid: 28725470
[6] Jiang Z D, Kempinski C, Chappell J. Extraction and analysis of terpenes/terpenoids. Current Protocols in Plant Biology, 2016,1(2):345-358.
[7] Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003,21(7):796-802.
pmid: 12778056
[8] Lohr M, Schwender J, Polle J E W. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Science, 2012, 185-186:9-22.
doi: 10.1016/j.plantsci.2011.07.018 pmid: 22325862
[9] Ward V C A, Chatzivasileiou A O, Stephanopoulos G. Cell free biosynthesis of isoprenoids from isopentenol. Biotechnology and Bioengineering, 2019,116(12):3269-3281.
[10] Chatzivasileiou A O, Ward V, Edgar S M, et al. Two-step pathway for isoprenoid synthesis. PNAS, 2019,116(2):506-511.
doi: 10.1073/pnas.1812935116 pmid: 30584096
[11] Clomburg J M, Qian S, Tan Z G, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(26):12810-12815.
[12] Lund S, Hall R, Williams G J. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism. ACS Synthetic Biology, 2019,8(2):232-238.
pmid: 30648856
[13] Rico J, Duquesne K, Petit J L, et al. Exploring natural biodiversity to expand access to microbial terpene synthesis. Microbial Cell Factories, 2019,18(1):23.
doi: 10.1186/s12934-019-1074-4 pmid: 30709396
[14] Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2010,1797(9):1587-1605.
[15] Ma T, Shi B, Ye Z L, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019,52:134-142.
[16] Qiao K J, Wasylenko T M, Zhou K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 2017,35(2):173-177.
doi: 10.1038/nbt.3763 pmid: 28092657
[17] Liu H H, Ji X J, Huang H. Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnology Advances, 2015,33(8):1522-1546.
doi: 10.1016/j.biotechadv.2015.07.010 pmid: 26248319
[18] Shabbir Hussain M, Rodriguez M G, Gao D, et al. Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. AIMS Bioengineering, 2016,3(4):493-514.
[19] Luo Z S, Liu N, Lazar Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metabolic Engineering, 2020,61:344-351.
[20] Gao S L, Tong Y Y, Zhu L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017,41:192-201.
doi: 10.1016/j.ymben.2017.04.004 pmid: 28414174
[21] Lv Y, Edwards H, Zhou J W, et al. Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica. ACS Synthetic Biology, 2019,8(3):568-576.
doi: 10.1021/acssynbio.8b00535 pmid: 30695641
[22] 刘畅, 刘安. 生物信息学分析RIPK4的分子结构与功能. 生物信息学, 2018,16(2):105-112.
Liu C, Liu A. Bioinformatics analysis of the structure and function of RIPK4. Chinese Journal of Bioinformatics, 2018,16(2):105-112.
[23] 童金蓉, 张昭寰, 黄振华, 等. 副溶血性弧菌脂蛋白定位系统转运蛋白结构与功能的生物信息学分析. 微生物学报, 2020,60(10):2242-2252.
Tong J R, Zhang Z H, Huang Z H, et al. Bioinformatics analysis for structure and function of localization of lipoprotein system transporters in Vibrio parahaemolyticus. Acta Microbiologica Sinica, 2020,60(10):2242-2252.
[24] Larroude M, Celinska E, Back A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnology and Bioengineering, 2018,115(2):464-472.
pmid: 28986998
[25] 段瑞芳, 武翠玲, 王牛牛, 等. 人ACE2蛋白结构和功能的生物信息学分析. 中国人兽共患病学报, 2020,36(9):712-719.
Duan R F, Wu C L, Wang N N, et al. Bioinformatics analysis of the structure and function of human ACE2 protein. Chinese Journal of Zoonoses, 2020,36(9):712-719.
[26] Jensen N B, Strucko T, Kildegaard K R, et al. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Research, 2014,14(2):238-248.
doi: 10.1111/1567-1364.12118 pmid: 24151867
[27] Englaender J A, Jones J A, Cress B F, et al. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synthetic Biology, 2017,6(4):710-720.
pmid: 28055177
[28] Braunwald T, Schwemmlein L, Graeff-Hönninger S, et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology, 2013,97(14):6581-6588.
doi: 10.1007/s00253-013-5005-8 pmid: 23728238
[29] 吴姝, 伊正君, 付玉荣. 结核分枝杆菌Pst S1蛋白结构与功能的生物信息学分析. 中国病原生物学杂志, 2019,14(7):806-810,821.
Wu S, Yi Z J, Fu Y R. Bioinformatic analysis of the structure and function of Pst S1 from Mycobacterium tuberculosis. Journal of Pathogen Biology, 2019,14(7):806-810,821.
[1] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[2] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[3] 陈凯丽,张付涛,王东月,张倩,李运清. 解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *[J]. 中国生物工程杂志, 2019, 39(3): 29-36.
[4] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[5] 关春峰, 武卫党, 季静, 王罡, 金超. 过表达AtchyB基因提高洋桔梗光胁迫耐受性的研究[J]. 中国生物工程杂志, 2012, 32(10): 25-32.
[6] 汪小锋, 申旭光, 赵鹤云, 孙永川, 纪昌涛, 闫云君. 带His-tag的解脂耶氏酵母脂肪酶Lip2在毕赤酵母中的表达及纯化[J]. 中国生物工程杂志, 2011, 31(04): 53-59.