Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 126-133    DOI: 10.13523/j.cb.20170917
综述     
蛋白质赖氨酸乙酰化修饰对中间代谢的调控研究
赖木兰, 陈雪岚
江西师范大学生命科学学院 南昌 330022
Devolopment of Regulation of Protein Lysine Acetylation on Intermediate Metabolism
LAI Mu-lan, CHEN Xie-lan
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
 全文: PDF(909 KB)   HTML
摘要: 生命活动的中间代谢酶存在大量的赖氨酸乙酰化修饰作用,这些在特定位点进行的可逆的赖氨酸乙酰化修饰作用能精确地调控胞内各种代谢路径。因此,对中间代谢酶赖氨酸乙酰化的研究成为了当今热点。对中间代谢酶的乙酰化修饰的研究进展进行综述,并归纳了几种典型的中间代谢酶的可逆乙酰化作用及其乙酰化位点的分布和在中间代谢路径中重要的调控作用,以期为深入研究蛋白质乙酰化修饰提供参考。
关键词: 赖氨酸乙酰化调控中间代谢酶脱乙酰化酶乙酰化转移酶    
Abstract: A large number of lysine acetylation exist in the intermediate metabolic enzymes of life activities. The reversible lysine acetylation at specific sites of protein can regulte various kinds of intracellula metabolic pathways. Thus, the research of lysine acetylation of intermediate metabolic enzymes currently becomes a hotspot. The paper reviews the research progress of lysine acetylation of intermediate metabolic enzymes and summarizes several typical reversible lysine acetylation of intermediate metabolic enzymes, their distribution sites and the important regulatory role in the intermediate metabolic pathways, which provide a reference for futher study of protein acetylation.
Key words: Intermediate metabolic enzymes    Acetyltransferase    Regulation    Deacetylase    Lysine actylation
收稿日期: 2017-05-09 出版日期: 2017-09-25
ZTFLH:  Q493.2  
基金资助: 国家自然科学基金(31660019,30960219)、江西省自然科学基金(2016BAB204173)资助项目
通讯作者: 陈雪岚     E-mail: xuelanchen162@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赖木兰
陈雪岚

引用本文:

赖木兰, 陈雪岚. 蛋白质赖氨酸乙酰化修饰对中间代谢的调控研究[J]. 中国生物工程杂志, 2017, 37(9): 126-133.

LAI Mu-lan, CHEN Xie-lan. Devolopment of Regulation of Protein Lysine Acetylation on Intermediate Metabolism. China Biotechnology, 2017, 37(9): 126-133.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170917        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/126

[1] Guan K L, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Cell, 2011, 36(2):108-116.
[2] Hirschey M, Shimazu T, Huang J Y, et al. SIRT3 Regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76(23):267-277.
[3] Huang D, Li Z H, You D, et al. Lysine acetylproteome analysis suggests its roles in primary and secondary metabolism in Saccharopolyspora erythraea. Applied Microbiology and Biotechnology, 2015, 99(3):1399-1413.
[4] Zhang K, Zheng S, Yang J S, et al. Comprehensive profiling of protein lysine acetylation in Escherichia coli. Journal of Proteome Research, 2013, 12(2):844-851.
[5] Mo R, Yang M K, Chen Z, et al. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model Cyanobacterium synechocystis sp. PCC 6803. Journal of Proteome Research, 2015, 14(2):1275-1286.
[6] Jones J, O'Connor C. Protein acetylation in prokaryotes. Proteomics, 2011, 11(15):3012-3022.
[7] Xing S F, Poirier Y. The protein acetylome and the regulation of metabolism. Trends in Plant Science, 2012, 17(7):423-430.
[8] Wagner G, Payne R. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. Journal of Biological Chemistry, 2013, 288(40):29036-29045.
[9] Fan J, Shan C L, Kang H B, et al. Tyr Phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Molecular Cell, 2014, 53(4):534-548.
[10] Barak R, Prasad K, Shainskaya A, et al. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. Journal of Molecular Biology, 2004, 342(2):383-401.
[11] Hu L, Lima B, Wolfe A. Bacterial protein acetylation:the dawning of a new age. Molecular Microbiology, 2010, 77(1):15-21.
[12] Tu S, Guo S J, Chen C J, et al. YcgC represents a new protein deacetylase family in prokaryotes. Biochemistry, 2015, 4(e05322):1-17.
[13] Hayden J, Brown L, Gunawardena H,et al. Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. Microbiology, 2013, 159(9), 1986-1999.
[14] Bernal V, Castano-Cerezo S, Gallego-Jara J, et al. Regulation of bacteriral physiology by lysine acetylation of proteins. New Biotechnology, 2014, 31(6):586-595.
[15] Wang Q Y, Zhang Y K, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327(5968):1004-1007.
[16] Hentchel K, Escalante-Semerena J. Acylation of biomolecules in prokaryotes:a widespread strategy for the control of biological function and metabolic stress. Microbiology and Molecular Biology Reviews, 2015, 3(79):321-346.
[17] Bi J, Wang Y H, Yu H G, et al. Modulation of central carbon metabolism by acetylation of isocitrate lyase in Mycobacterium tuberculosis. Scientific Reports, 2016, 7(44826):1-11.
[18] Ishigaki Y, Akanuma G, Minoru Y, et al. Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus. Journal of Proteomics, 2017, 155:63-72.
[19] Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science, 2010, 327(5968):1000-1004.
[20] Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Molecular Cell, 2011, 43(1):33-44.
[21] Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell, 2011, 42(2):719-730.
[22] Zhang T F, Wang S W, Lin Y, et al. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metabolism, 2012, 15(1):75-87.
[23] Hebert A, Dittenhafer-Reed K, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Molecular Cell, 2013, 49(1):186-199.
[24] Bharathi S, Zhang Y X, Mohsen A, et al. Sirtuin 3(SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. Journal of Biological Chemistry, 2013, 288(47):33837-33847.
[25] Chen T S, Liu J N, Li N, et al. Mouse SIRT3 Attenuates hypertrophy related lipid accumulation in the heart through the deacetylation of LCAD. Plosone, 2015, 11(5):1-18.
[26] Shimazu T, Hirschey M, Hua L, et al. SIRT3 Deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metabolism, 2010, 12(6):654-661.
[27] Hölper S, Nolte H, Bober E, et al. Dissection of metabolic pathways in the Db/Db mouse model by integrative proteome and acetylome analysis. Molecular BioSystems, 2015, 11(3):908-922.
[28] Matthew J R, John C N, Jason M H, et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6601-6606.
[29] Takashi N, David J L, Marcia C H, et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009, 137(3):560-570.
[30] Yu W, LinY, Yao J. et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. Journal of Biological Chemistry, 2009, 284(20):13669-13675.
[31] Hallows W, Yu W, Smith B, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Molecular Cell, 2011, 41(2):139-149.
[32] Trevisson E, Salviati L, Baldoin M, et al. Argininosuccinate lyase deficiency:mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Human Mutation, 2007, 28(7):694-702.
[33] Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases. International Journal of Clinical Chemistry, 2007, 375(1- 2):20-35.
[34] Yu W, Dittenhafer-Reed K, Denu J. SIRT3 protein deacetylates isocitrate dehydrogenase 2(IDH2) and regulates mitochondrial redox status. Journal of Biological Chemistry, 2012, 287(17):14078-14086.
[35] Hu H L, Zhu W W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 2017, 65(2)515-528.
[36] Zhu Y M, Yan Y F, Principe D, et al. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer & Metabolism, 2014, 65(2):15.
[37] Zhang M M, Pan Y D, Dorfman R, et al. Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2. Scientific Reports, 2016,7(7):1-10.
[38] 王琪琳, 窦建民. 赖氨酸乙酰化在代谢相关疾病中的调控机制. 生命的化学, 2013, 33(6):678-683. Wang Q L, Dou J M. The regulatory mechanism of lysine acetylation in the metabolism-related diseases.Chemistry of Life, 2013, 33(6):678-683.
[39] 王义平, 雷群英. 乙酰化对代谢的调控及其在代谢相关疾病中的作用. 中国科学:生命科学, 2015, 45(11):1083-1092. Wang Y P, Lei Q Y.Regulation of metabolism by lysine acetylation and its role in metabolic diseases. Scientia Sinica Vitate,2015, 45(11):1083-1092.
[40] Heather L C, Cole M A, Tan J J, et al. Metabolic adaptation to chronic hypoxia in cardiac mitochondria. Basic Research in Cardiology, 2012, 107(3):268.
[41] Yoon H, Shin S H, Shin D H, et al. Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochemical and Biophysical Research Communications, 2014, 444(1):36-43.
[42] Tao R, Coleman M C, Pennington J D, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Molecular Cell, 2010, 40(6):893-904.
[43] Michael P, Laleh G, Danila B, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Development, 2007, 21(20):2644-2658.
[44] Zhao T, Li J, Chen A F. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1.American Journal Physiology Endocrinology Metablism, 2010, 299(1):E110-E116.
[45] 吕斌娜, 梁文星. 蛋白质乙酰化修饰研究进展. 生物技术通报, 2015, 31(4):166-174. Lv B N, Liang W X. Advances in protein acetylation modification. Biotechnology Bulletin, 2015, 31(4):166-174.
[46] Jose M V, Francisco J A. Sirtuin activators and inhibitors. Biofactors, 2012, 38(5):349-359.
[1] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[2] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[3] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[4] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[5] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[6] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[7] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[8] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[9] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[10] 田开仁,薛二淑,宋倩倩,乔建军,李艳妮. CRISPR-dCas9调控基因转录的研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 94-101.
[11] 曲娟娟,詹晓北,张洪涛,周献超,贾雨辰,曹雪颖. 基于pH调控的环β-1,2-葡聚糖合成及结构鉴定 *[J]. 中国生物工程杂志, 2018, 38(6): 43-51.
[12] 李京霞,夏惠,吕秀兰,王进,梁东. 抗坏血酸的代谢和调控——以模式植物和园艺植物为例 *[J]. 中国生物工程杂志, 2018, 38(3): 105-114.
[13] 陈博雯,刘海龙,肖玉菲,覃子海,张烨,张晓宁. 叶桉COMTCCoAOMT基因定向调控木质素单体合成的烟草转化研究*[J]. 中国生物工程杂志, 2018, 38(3): 24-32.
[14] 樊亚超,张霖,李晓姝,王鹏翔,姚新武,乔凯. Klebsiella pneumoniae CICC10011发酵产2,3-丁二醇的工艺研究[J]. 中国生物工程杂志, 2018, 38(2): 68-74.
[15] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.